期刊文献+

■■上在某点处左可导映射的刻画

Characterizations of Left Derivable Mapping at Some Point on ■■
下载PDF
导出
摘要 证明了如果P为■■中一个非平凡投影,则从■■到自身的范数连续的在P处左可导映射恒为0.还证明了若δ是从■■到自身的范数连续的在0处左可导映射,则δ(A)=Aδ(I),对于任意的A∈■■. It was proved that if Pis a nontrivial projection in■■,then every norm-continuous left derivable mapping at P from■■ into itself was 0.Ifδwas a norm-continuous left derivable mapping at 0 from■■ into itself,thenδ(A)=Aδ(I)for any A∈■■ was testified as well.
作者 周及人
出处 《上海应用技术学院学报(自然科学版)》 2014年第3期259-261,273,共4页 Journal of Shanghai Institute of Technology: Natural Science
基金 上海市高校青年教师培育基金资助项目(ZZyyy11059) 上海应用技术学院引进人才基金资助项目(YJ2011-01)
关键词 左导子 某点处左可导映射 投影 left derivation left derivable mapping at some point projection
  • 相关文献

参考文献8

  • 1Jiren Zhou.Linear mappings derivable at some nontrivial elements[J]. Linear Algebra and Its Applications . 2011 (8)
  • 2Jun Zhu,Changping Xiong.All-derivable points in continuous nest algebras[J]. Journal of Mathematical Analysis and Applications . 2007 (2)
  • 3On left derivations and related mappings[J]. Proceedings of the American Mathematical Society . 1990 (1)
  • 4Matej Bre?ar.Characterizing homomorphisms, derivations and multipliers in rings with idempotents. Proceedings of the Royal Society of Edinburgh, Section: A Mathematics . 2007
  • 5Jiankui Li,Jiren Zhou.Jordan left derivations and some left derivable maps. Oper. Matrices . 2010
  • 6Kil-Woung Jun,Byung-Do Kim.A note on Jordan left derivations. Bulletin Korean Mathematical Society . 1996
  • 7Joso Vukman.Jordan left derivations on semiprime rings. Mathematical Journal of Okayama University . 1997
  • 8M. Ashraf,N. Rehman.On Lie ideals and Jordan left derivations of prime rings. Arch. Math. (Brno) . 2000

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部