摘要
若将平行公理代以与之相冲突的命题,会得到非欧几何。而若在逻辑系统中限制一般意义的矛盾律、排中律,类似地就会得到一种非亚里士多德式的逻辑:拟真势逻辑。以拟真势逻辑系统A为基础,对之进行语法和语义的逻辑扩张,即可得到拟真势多主体认知逻辑。这种特殊的认知逻辑可以容忍认知的真矛盾冲突,若以之为基础逻辑,知识或信念的暂时不协调将不会导致逻辑上的无意义(不足道)。它还可以容忍认知的真反对冲突,为同时拒绝一个信念(或知识、观念、思想等)及其否定提供了可靠的逻辑依据。由于这种逻辑可以作为那些包含认知冲突的认知理论的底层逻辑,因而也可以看作维特根斯坦烦恼在认知领域的一种解决方式。此外,其作为处理逻辑悖论的'容悖'思路,尽管在本质上没有解决掉悖论,但却可以在那些认知悖论彻底解决之前,为理性认知提供一个可靠的逻辑基础。
If the fifth postulate of Euclid is replaced by its negation, we will get NonEuclidean geometry. Similarly, if the law of contradiction and the law of excluded middle is restricted in general sense,we will get a kind of non-Aristotelian logic: nonalethic logic. On the basis of non-alethic propositional logic A, a non-alethic multi agent epistemic logic can be presented by logical expansion. This special epistemic logic can tolerate epistemic conflicts about dialetheia(true contradiction), then the temporary inconsistency of knowledge or belief will not cause to be meaningless(trivial) logically according to it. This logic also can tolerate epistemic conflicts about true contrariety,and provide the logical foundation for denying a belief(knowledge, idea, concepts, etc.)and its negation at the same time. This logic can be looked upon as the underlying logic for the theory containing conflicting beliefs( knowledge, ideas, concepts, etc.),so it also can be seen as a solution to the annoyance of Wittgenstein in the epestemic filed.The way of its tolerating paradox,although it is not a real solution to paradoxes,but it can give us a rational logical foundation before we completely solve these epistemic paradoxes.
出处
《思想与文化》
CSSCI
2017年第2期311-322,共12页
Thought & Culture
基金
国家社科基金一般项目“拟真势多主体认知和逻辑研究”(项目编号:15BZX085)
关键词
拟真势逻辑
矛盾律
排中律
真矛盾
真反对
Non-alethic
the law of contradiction
the law of excluded middle
dialetheia
true contrariety