期刊文献+

Ti和Fe连续驱动摩擦焊焊接界面宏观变形及微观形貌研究

Research on Interface Macroscopic Deformation and Micromorphology of Ti/Fe Continuous Drive Friction Welding
下载PDF
导出
摘要 为了给钛/钢连续驱动摩擦焊制造提供理论支撑,采用钛和钢主体元素的纯钛和纯铁进行连续驱动摩擦焊试验,研究了焊接时间和摩擦压力对界面宏观变形和组织演变的影响规律。试验结果表明:随着摩擦压力的增大,界面宏观变形增大。随着焊接时间的增加,界面宏观变形变化不大。焊接界面两侧组织细化明显,Fe侧由细小的铁素体晶粒组成,Ti侧由细小的α晶粒组成。塑性层厚度随摩擦压力增加而增加,且近似为线性关系,焊接时间对塑性层厚度影响不大。 In order to provide theoretical support for continuous drive friction welding manufacturing of titanium and steel,the continuous drive friction welding test of pure titanium and pure iron which are the main element of titanium alloy and steel was carried out.The effects of welding time and friction pressure on the macroscopic deformation and the microstructure evolution of the interface were studied.The results show that with the increase of the friction pressure,the interface macroscopic deformation increases.With the increase of welding time,the change of interface macroscopic deformation is not obvious.The microstructure at two sides of the welding interface is refined.The microstructure in the Fe side is composed of fine ferrite and the microstructure in the Ti side is composed of fineαgrains.With the increase of the friction pressure,the thickness of plastic layers increases and the relationship between the thickness of plastic layer and friction pressure is approximately linear relation.In addition,the effect of welding time on the thickness of plastic layers is not obvious.
作者 温国栋 WEN Guodong(China Coal Technology Engineering Group Xi'an Research Institute,Xi'an 710065,China)
出处 《热加工工艺》 北大核心 2019年第11期24-27,31,共5页 Hot Working Technology
基金 国家自然科学青年基金项目(NSFC 51705536) 陕西省自然科学基础研究计划青年项目(2017JQ5070) 中煤科工集团创新基金面上项目(2018MS010)
关键词 连续驱动摩擦焊 异种金属 界面变形 微观形貌 continuous drive friction welding dissimilar metal interface deformation micromorphology
  • 相关文献

参考文献1

二级参考文献13

  • 1VAIRIS A, FROST M. Modelling the linear friction welding of titanium blocks. Materials Science and Engineering: A 2000. 292(l): 8-17.
  • 2MAALEKIAN M, KOZESCHNIK E, BRANTNER H P, et al. Comparative analysis of heat generation in friction welding of steel bars. Acta Matefialia, 2008, 56(12): 2843-2855.
  • 3LI W, WANG F. Modeling of continuous drive friction welding of mild steel. Materials Science and Engineering: A, 2011, 528(18): 5921-5926.
  • 4MAALEKIAN M. Friction welding- critical assessment of literature. Science and Technology of Welding & Joining, 2007, 12(8): 738-759.
  • 5CROSSLAND B. Friction welding. Contemporary Physics, 1971, 12(6): 559-574.
  • 6ASM International. ASM handbook- welding, brazing and soldering. Materials Park, OH, 1993.
  • 7VILL V I. Friction welding of metals. New York: American Welding Society, 1962.
  • 8TOLEPHIH M H, MASHLOOSH K M, WAHEED Z. Comparative study of the mechanical properties of (FS) and MIG welded joint in (AA7020-T6) aluminum alloy. A1- Khwarizmi Engineering Journal, 2011, 7(2): 22- 35.
  • 9SCHNEIDER J A, NUNESJ AC. Characterization of plastic flow and resulting microtextures in a friction stir weld. Metallurgical and Materials Transactions B, 2004, 35(4): 777- 783.
  • 10CHEN ST, LUITS, CHEN L H. Effect of revolutionary pitch on the microhaness drop and tensile properties of friction stir processed 1050 aluminum alloy. Materials Transactions, 2009, 50(8): 1941-1948.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部