期刊文献+

基于遗传变异的鸟群图像分割算法 被引量:2

Bird swarm image segmentation algorithm based on genetic variation
下载PDF
导出
摘要 为避免鸟群算法在求取阈值时陷入早熟和局部优化,提出一种基于遗传变异的鸟群图像分割算法。在鸟群算法每一次迭代后加入遗传算法中的选择与变异,使算法加强在当前最优解附近的局部搜索能力,有效避免陷入局部最优解;针对噪声污染提出了"定位-中值-高斯平滑"滤波器对噪声污染图像进行预处理;将遗传算法、双种群遗传的算法、鸟群算法、遗传变异鸟群算法对图像进行分割的结果进行对比,以最大间类方差法(otsu)作为适合度函数。实验结果表明,遗传变异鸟群算法在寻找最优的解时的准确性和稳定性优于其它算法,对噪声有较强的鲁棒性。 To avoid the bird swarm algorithm getting into premature and local optimization when obtaining the threshold value,a bird image swarm algorithm based on genetic mutation was proposed.After each iteration of the bird swarm algorithm,the selection and mutation in genetic algorithm were added.The algorithm not only enhanced the local search ability near the current optimal solution,but also effectively avoided falling into the local optimal solution.A Positioning-Median-Gaussian smoothing filter for noise pollution was proposed to preprocess the noise pollution images.The genetic algorithm,two-population genetic algorithm,the bird swarm algorithm and genetic variation bird swarm algorithm were used to segment the images.The maximum variogram(otsu)was used as the fitness function.Experimental results show that the accuracy and stability of the genetic variation bird swarm algorithm in finding the optimal solution are superior to other algorithms and robust to noise.
作者 吴军 王龙龙 WU Jun;WANG Long-long(College of Information Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China)
出处 《计算机工程与设计》 北大核心 2019年第4期1027-1032,共6页 Computer Engineering and Design
关键词 遗传算法 最大间类方差法 鸟群算法 灰度阈值 图像去噪 genetic algorithm maximum class variance method bird swarm algorithm grayscale threshold image denoising
  • 相关文献

参考文献6

二级参考文献74

  • 1程林辉,钟珞.求解多峰函数优化问题的并行免疫遗传算法[J].微电子学与计算机,2015,32(5):117-121. 被引量:10
  • 2于秋则,程辉,柳健,田金文,关世义.基于改进Hausdorff测度和遗传算法的SAR图像与光学图像匹配[J].宇航学报,2006,27(1):130-134. 被引量:31
  • 3邝航宇,金晶,苏勇.自适应遗传算法交叉变异算子的改进[J].计算机工程与应用,2006,42(12):93-96. 被引量:95
  • 4Ghamisia P, Couceiro M S, Benediktsson J A, et al. An effi- cient method for segmentation of images based on fractional calculus and natural selection[J]. Expert Systems with Appli- cations, 2012, 39(16): 12407-12417.
  • 5Pun T. Entropy thresholding: a new approach[J]. Computer Vision, Graphics, and Image Processing, 1981, 16(3): 210-239.
  • 6Kapur J N, Sahoo P K, Wong A K C. A new method for gray- level picture thresholding using the entropy of the histogram[J]. Computer Vision, Graphics, and Image Processing, 1985, 29(3): 273-285.
  • 7Abutaleb A S. Automatic thresholding of gray-level pictures using two-dimensional entropy[J]. Computer Vision, Graphics, and Image Processing, 1989, 47(1): 22-32.
  • 8Xiao Yang, Cao Zhiguo, Zhong Sheng. New entropic thresh- olding approach using gray-level spatial correlation histo- gram[J]. Optical Engineering, 2010, 49(12): 127007.
  • 9Yimit A, Hagihara Y, Miyoshi T, et al. 2-D direction histogram based entropic thresholding[J]. Neurocomputing, 2013, 120(23): 287-297.
  • 10Xiao Yang, Cao Zhiguo, Yuan Junsong. Entropic image thresh-olding based on GLGM histogram[J]. Pattern Recognition Letters, 2014, 40: 47-50.

共引文献97

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部