期刊文献+

加权融合核稀疏和协同表示的高光谱影像分类 被引量:4

Hyperspectral image classification by weighted-fusing kernel sparse and collaborative representations
下载PDF
导出
摘要 为进一步提高表示分类器中基原子对测试样本的表达能力,提出一种加权融合核稀疏和协同表示的高光谱影像分类算法(WKSCRC)。充分利用核函数处理非线性数据的优势,将高光谱影像数据映射到高维核特征空间;对核稀疏表示系数和核协同表示系数进行加权融合,在核融合表示系数下重构分类测试样本。在ROSIS和AVIRIS两个数据集上的仿真结果表明,该算法在精度与稳定性上优于其它传统分类算法。 To improve the representation ability of the atoms in representation-based classifiers,a hyperspectral image classification algorithm,which named weighted-fusing kernel sparse and collaborative representation was presented.The hyperspectral image data were projected to high dimensional kernel feature space using kernel function which took the advantages of dealing with nonlinear data.The weighted-fusing representation coefficient obtained by fusing two kernel individual representation methods,i.e.kernel SR(KSRC)and kernel CR(KCRC),was used to reconstruction and classification for the test sample.Experiments on two data sets of ROSIS and AVIRIS indicate that the proposed algorithm is better than several traditional representation classification algorithms in precision and stability.
作者 侯良国 向泽君 楚恒 HOU Liang-guo;XIANG Ze-jun;CHU Heng(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Chongqing Survey Institute,Chongqing 400020,China;School of Geographical Sciences,Southwest University,Chongqing 400715,China)
出处 《计算机工程与设计》 北大核心 2019年第4期1058-1063,共6页 Computer Engineering and Design
基金 重庆市博士后科研基金项目(Rc201336) 重庆高校创新团队建设计划基金项目(CXTDX201601020)
关键词 高光谱分类 稀疏表示 协同表示 核技巧 加权融合 hyperspectral image classification sparse representation classification(SRC) collaborative representation classification(CRC) kernel trick weighted-fusing
  • 相关文献

参考文献1

二级参考文献160

共引文献245

同被引文献18

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部