期刊文献+

基于卷积神经网络的多目标实时检测 被引量:11

Multi-target real-time detection based on convolutional neural network
下载PDF
导出
摘要 为解决智能驾驶应用场景下以行人与车辆为主,附带骑行电动车的多目标检测存在检测速度不满足实时性的问题,提出一种多目标实时检测方法。通过对YOLO (you look only once)v2卷积神经网络模型进行维度聚类分析以及结构调整等优化举措,行人与车辆检测AP (平均准确率)值分别为71%和81%,检测速度为50帧/s。实验结果表明,该方法与目前先进目标检测方法相比,在准确率相差5%以内的前提下大幅提高检测速度,实现了实时性检测的目标。 To solve the problem that the detection speed of multi-objective detection of pedestrians and vehicles with attached electric vehicle riding in real-time is not satisfied with the real-time performance in smart driving applications,a multi-objective realtime detection method was proposed.Dimensional clustering analysis and structural adjustment and other optimization measures of YOLO(you look only once)V2 convolution neural network model were carried out.The average pedestrian and vehicle detection AP(average accuracy)values are 71%and 81%,respectively.The detection speed is 50 frames/s.Experimental results show that compared with the current advanced target detection method,the proposed method greatly improves the detection speed on the premise of a difference of less than 5%in accuracy,realizing the goal of real-time detection.
作者 刘志成 祝永新 汪辉 田犁 封松林 LIU Zhi-cheng;ZHU Yong-xin;WANG Hui;TIAN Li;FENG Song-lin(Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China;School of Electronic,Electrical and Communication Engineering,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《计算机工程与设计》 北大核心 2019年第4期1085-1090,共6页 Computer Engineering and Design
基金 国家重点研发计划基金项目(2017YFA0206104) 上海市科学技术委员会科研计划基金项目(16511108701) 张江管委会公共服务平台基金项目(2016-14)
关键词 卷积神经网络 多目标检测 行人检测 车辆检测 实时检测 智能驾驶 convolutional neural network multi-target detection pedestrian detection vehicle detection real-time detection smart driving
  • 相关文献

参考文献3

二级参考文献38

  • 1Vapnik V. Statistical learning theory [M]. New York: Wiley Press, 1998.
  • 2[ Knerr UH. Pair-wise classification and support vector machines [M]. MA: MITPress, 1999: 255-268.
  • 3Hsu CW, Lin CJ. A comparison of methods for multi-class support vector machines [J]. IEEE Transactions on Neural Networks, 2002, 13 (2): 415-425.
  • 4Platt JC, Cristianini N, Shawe Taylor J. Large margin DAGs for multiclass classification [J]. Advances in Neural Informa-tion Processing Systems, 2000, 12 (3): 547-553.
  • 5Symeon N, Nikos N, Loannis P. Multiplicative update rules for incremental training of multielass support vector machines [J]. Pattern Recognition, 2012, 45 (5); 1838-1852.
  • 6Arun Kumar M, Gopal M. Reduced one-against-all method for multiclass SVM classification [J]. Expert Systems with Appli- cations, 2011, 38 (11): 14238-14248.
  • 7Weiss GM, Hirsh H. A quantitative study of small disjuncts [C] //Proceedings of the 17th National Conference on Artificial Intelligence. Texas AAAIPress, 2000: 665-670.
  • 8Japkowicz N, Stephen S. The class imbalance problem: A systematic study [J ]. Intelligent Data Analysis Journal, 2002, 6 (5): 429-450.
  • 9Chawlan V, Bowyer KW, Hallo O. SMOTE: Synthetic mi- nority over-sampling technique [J]. Journal of Artificial In- telligenceResearch, 2002, 16: 321-357.
  • 10] Salvador G. Evolutionary-based selection of generalized in- stances for imbatanced classification [J]. Knowledge Based Systems, 2012, 25 (1): 3-12.

共引文献32

同被引文献86

引证文献11

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部