期刊文献+

Molecular basis of cleft palates in mice 被引量:2

Molecular basis of cleft palates in mice
下载PDF
导出
摘要 Cleft palate, including complete or incomplete cleft palates, soft palate clefts, and submucosal cleft palates, is the most frequent congenital craniofacial anomaly in humans. Multifactorial conditions, including genetic and environmental factors, induce the formation of cleft palates. The process of palatogenesis is temporospatially regulated by transcription factors, growth factors, extracellular matrix proteins, and membranous molecules; a single ablation of these molecules can result in a cleft palate in vivo. Studies on knockout mice were reviewed in order to identify genetic errors that lead to cleft palates. In this review, we systematically describe these mutant mice and discuss the molecular mechanisms of palatogenesis. Cleft palate, including complete or incomplete cleft palates, soft palate clefts, and submucosal cleft palates, is the most frequent congenital craniofacial anomaly in humans. Multifactorial conditions, including genetic and environmental factors, induce the formation of cleft palates. The process of palatogenesis is temporospatially regulated by transcription factors, growth factors, extracellular matrix proteins, and membranous molecules; a single ablation of these molecules can result in a cleft palate in vivo. Studies on knockout mice were reviewed in order to identify genetic errors that lead to cleft palates. In this review, we systematically describe these mutant mice and discuss the molecular mechanisms of palatogenesis.
出处 《World Journal of Biological Chemistry》 CAS 2015年第3期121-138,共18页 世界生物化学杂志(英文版)(电子版)
基金 Supported by The Japan Society for the Promotion of Science(JSPS) through KAKENHI grants 25670774 and 15K11004,awarded to Funato N
关键词 Tbx1 SUBMUCOSAL CLEFT PALATE Incomplete CLEFT PALATE Palatal shelf PALATOGENESIS KNOCKOUT MICE Tbx1 Submucosal cleft palate Incomplete cleft palate Palatal shelf Palatogenesis Knockout mice
  • 相关文献

参考文献10

  • 1Carolina Parada,Jingyuan Li,Junichi Iwata,Akiko Suzuki,Yang Chai.CTGF Mediates Smad-Dependent Transforming Growth Factor β Signaling To Regulate Mesenchymal Cell Proliferation during Palate Development[J]. Molecular and Cellular Biology . 2013 (17)
  • 2Abigail D. Kasberg,Eric W. Brunskill,S. Steven Potter.SP8 regulates signaling centers during craniofacial development[J]. Developmental Biology . 2013
  • 3Irinna Papangeli,Peter J. Scambler.Tbx1 Genetically Interacts With the Transforming Growth Factor-β/Bone Morphogenetic Protein Inhibitor Smad7 During Great Vessel Remodeling[J]. Circulation Research . 2013 (1)
  • 4Junko Okano,Wataru Kimura,Virginia E. Papaionnou,Naoyuki Miura,Gen Yamada,Kohei Shiota,Yasuo Sakai.The regulation of endogenous retinoic acid level through CYP26B1 is required for elevation of palatal shelves[J]. Dev. Dyn. . 2012 (11)
  • 5Barritt, Laura,Miller, Joseph,Scheetz, Laura,Gardner, Kelsey,Pierce, Marsha,Soukup, Garrett,Rocha-Sanchez, Sonia.Conditional deletion of the human ortholog gene Dicer1 in Pax2-Cre expression domain impairs orofacial development[J]. Indian Journal of Human Genetics . 2012 (3)
  • 6Brian T. Keady,Rajeev Samtani,Kimimasa Tobita,Maiko Tsuchya,Jovenal T. San Agustin,John A. Follit,Julie A. Jonassen,Ramiah Subramanian,Cecilia W. Lo,Gregory J. Pazour.IFT25 Links the Signal-Dependent Movement of Hedgehog Components to Intraflagellar Transport[J]. Developmental Cell . 2012 (5)
  • 7Ryo Aizawa,Atsushi Yamada,Dai Suzuki,Tadahiro Iimura,Hidetoshi Kassai,Takeshi Harada,Masayuki Tsukasaki,Gou Yamamoto,Tetsuhiko Tachikawa,Kazuki Nakao,Matsuo Yamamoto,Akira Yamaguchi,Atsu Aiba,Ryutaro Kamijo.Cdc42 is required for chondrogenesis and interdigital programmed cell death during limb development[J]. Mechanisms of Development . 2012 (1-4)
  • 8Monika Kowalczyk,Jim Hughes,Christian Babbs,Luis Sanchez-Pulido,Dorota Szumska,Jacqueline Sharpe,Jacqueline Sloane-Stanley,Gillian Morriss-Kay,Leslie Smoot,Amy Roberts,Hugh Watkins,Shoumo Bhattacharya,Richard Gibbons,Chris Ponting,William Wood,Douglas Higgs.Nprl3 is required for normal development of the cardiovascular system[J]. Mammalian Genome . 2012 (7)
  • 9Christopher Dravis,Mark Henkemeyer.Ephrin-B reverse signaling controls septation events at the embryonic midline through separate tyrosine phosphorylation-independent signaling avenues[J]. Developmental Biology . 2011 (1)
  • 10Liyun Sang,Julie J. Miller,Kevin C. Corbit,Rachel H. Giles,Matthew J. Brauer,Edgar A. Otto,Lisa M. Baye,Xiaohui Wen,Suzie J. Scales,Mandy Kwong,Erik G. Huntzicker,Mindan K. Sfakianos,Wendy Sandoval,J. Fernando Bazan,Priya Kulkarni,Francesc R. Garcia-Gonzalo,Allen D. Seol,John F. O’Toole,Susanne Held,Heiko M. Reutter,William S. Lane,Muhammad Arshad Rafiq,Abdul Noor,Muhammad Ansar,Akella Radha Rama Devi,Val C. Sheffield,Diane C. Slusarski,John B. Vincent,Daniel A. Doherty,Friedhelm Hildebrandt,Jeremy F. Reiter,Peter K. Jackson.Mapping the NPHP-JBTS-MKS Protein Network Reveals Ciliopathy Disease Genes and Pathways[J]. Cell . 2011 (4)

共引文献1

同被引文献3

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部