期刊文献+

基于DEM分析的引汉济渭工程受水区调蓄节点选址研究 被引量:1

DEM analysis based study on site-selection of regulation and storage works within water-receiving area of Hanjiang-to-Weihe River Water Diversion Project
下载PDF
导出
摘要 就引汉济渭工程而言,由于关中受水区地势平坦,很难找到单一的大容量洼地修建调蓄工程,因此,需要采用分散式调蓄工程布置方案。本文在数字高程地形(DEM)数据分析的基础上,结合土地利用情况、下垫面条件以及调蓄节点与用水单元的空间关系,在受水区范围内优选了调蓄条件较好的地点25处,总共调蓄容量为1.37亿m3,可满足一般平水年份引汉济渭工程受水区的年调蓄容量要求。 So far as Hanjiang-to-Weihe River Water Diversion Project is concerned,it is quite difficult to find out a single depression with large capacity for constructing the regulation and storage works within the water receiving area in Guanzhong Region as the topography is flat therein,and then a scheme for a layout of decentralized regulation and storage works is necessary to be adopted. Based on the DEM( Digital Elevation Model) analysis,25 locations with better water regulation and storage conditions are optimally selected within the water-receiving area in accordance with the conditions of land utilization and underlying surface as well as the spatial relationship between the regulation and storage works and the water users therein; of which the total water regulation and storage capacity is about 0. 137 billion m3,thus the annual water regulation and storage demand from the water-receiving area in a normal year can be surely satisfied.
出处 《水利水电技术》 CSCD 北大核心 2014年第7期26-29,共4页 Water Resources and Hydropower Engineering
基金 陕西省引汉济渭工程科技项目"引汉济渭配水工程调蓄基础研究" 水利部公益性行业科研专项经费项目"北京智能水网顶层设计和水量调度系统框架研究"(201301005) 财政部水利部专项"我国节水型社会建设理论技术与实践应用研究"(水综节水[2006]50号)
关键词 引汉济渭工程 调蓄 DEM 洼地 陕西省 Hanjiang-to-Weihe River Water Diversion Project regulation and storage DEM(Digital Elevation Model) depres-sion Shaanxi Province
  • 相关文献

参考文献4

二级参考文献31

  • 1杜芙蓉,董增川,范群芳.南水北调山东段水资源优化配置研究[J].水利学报,2007,38(S1):485-489. 被引量:8
  • 2王志良,杨弘.天津市水源地降水丰枯遭遇性分析[J].海河水利,2004(6):15-18. 被引量:5
  • 3贺北方.区域可供水资源优化分配与产业结构调整——大系统逐级优化序列模型[J].郑州工学院学报,1989,10(1):56-62. 被引量:9
  • 4冉啟香,张翔.多变量水文联合分布方法及Copula函数的应用研究[J].水电能源科学,2010,28(9):8-11. 被引量:18
  • 5Gideon Oron, Carlos Percia. Model calibration of deepbed filtration based on pilot-scale treatment of secondary effluent [J]. Water Science and Technology, 1997,36 (4) : 231-237.
  • 6Hong Zhang, Heng Li and Tam C M. Permutation based particle swarm optimization for resource constrained project scheduling[J]. Journal of Computing in Civil Engineering, 2006,20 (2) : 141 - 149.
  • 7ZHANG L, SINGH V P. Bivariate Rainfall Frequency Distribu- tions using Archimedean Copulas[J]. Journal of Hydrology, 2007,332 : 93-109.
  • 8SUBIMAL G. Modelling Bivariate Rainfall Distribution and Generating Bivariate Correlated Rainfall Data in Neighbouring Meteorological Subdivisions using Copula [J]. Hydrological Process, 2010,24 : 3558-3567.
  • 9VANDENBERGHE S, VERHOEST N E C, ONOF C, et al. A Comparative Copula-based Bivariate Frequency Analysis of Ob- served and Simulated Storm Events: A Case Study on Bartlett- Lewis Modeled Rainfall [J]. Water Resource Research, 2011, 47:W07529.
  • 10ZHANG L, SINGH V P. Bivariate Flood Frequency Analysis u- sing the Copula Method[J]. Journal Hydrologic Engineering ASCE, 2006,11(2): 150-164.

共引文献31

同被引文献7

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部