期刊文献+

保持算子Jordan-■-triple乘积幂等性的映射

Mappings Preserving the Idempotency of Jordan-■-triple Product of Operators
下载PDF
导出
摘要 设H是无限维的复的完备的不定内积空间,B(H)是H上所有有界线性算子构成的代数,ΩB(H).本文主要刻画Ω上保持算子Jordan-?-triple乘积幂等性的映射.当H为Hilbert空间时,作为推论,给出了Ω上保持算子Jordan-*-triple乘积幂等性的映射的具体形式. Let H be a infinite complex completely indefinite inner product spaces,Let B(H)be the sets of all linear operators on H.LetΩbe a subset of B(H),which containing at least all nonzero scalar multiples of rank-one idempotents and I.The maps preserving the idempotency of Jordan-?-triple product of operators onΩare characterized.Consequently,if H is a Hilbert spaces,the maps preserving the idempotency of Jordan-*-triple product of operators onΩare completely classified.
作者 董改芳 DONG Gaifang(Shuozhou Advanced Normal College,Shuozhou 036002,China)
出处 《太原师范学院学报(自然科学版)》 2019年第2期22-27,共6页 Journal of Taiyuan Normal University:Natural Science Edition
关键词 不定内积空间 幂等性 算子Jordan-■-triple乘积 算子Jordan-*-triple乘积 indefinite inner product spaces idempotency Jordan■triple product of operators Jordan-*-triple product of operators
  • 相关文献

参考文献1

二级参考文献8

  • 1Li Fang,Ji Guoxing,Pang Yongfeng. Maps preserving the idempotency of products of operators[J]. Linear Algebra and its Aplication, 2007,426 : 40-50.
  • 2Tatjana Petek, Mappings preserving the idempotency of Jordan triple products of operator s, prepring[J]. Linear and Multilin ear Algebra,2010,58.903 925.
  • 3侯晋川,崔建莲.算子代数上线性映射引论[M].北京:现代数学丛书,科学出版社,2002.
  • 4Bresar M, Semrl P. On locally linearly dependent operators and derivations[,J]. Trans Amer Math Soe, 1999,351 : 1 257-1 275.
  • 5Meshulan R, Semal P. Locally linear dependent operators[,J]. Pacific J Nath, 2002,203:441-459.
  • 6Molnr L. Orthogonality preserving transformations on idndfinite inner product space[,J]. J. Funct. Anal. ,2002,194248-262.
  • 7Peter Semrl. Maps on idempotents[J]. Studia Math, 2005,169 : 21-44.
  • 8Huishuang Gao. Jordan-triple multiplicative surjective maps on (H) I-J]. J MAnal Appl, 2013,401:397-403.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部