期刊文献+

一种利用实验测量和数值计算确定3m点群晶体弹性系数的方法 被引量:1

An Alternative Method in Measurement of Elastic Constants of a Crystal with 3 m Symmetry
下载PDF
导出
摘要 将实验测量与数值计算相结合确定低对称性晶体弹性系数的方法可以弥补常规方法测量时造成的弹性系数非对角元误差大的不足。本文将该方法由正交系晶体推广到了三方系 3m点群晶体 ,在数值计算中选取了目前公认的无约束最优化方法中最稳定的两种算法—单纯形法和BFGS法 ,并增加了弹性系数的约束条件 ,提高了方法的适应性和正确性。在此基础上 ,本文利用 3m点群晶体LiNbO3 和LiTaO3 的弹性劲度系数 [cij]和顺服系数 [sij]的实验数据对该方法进行了讨论及验证。结果表明这种方法对 3m点群晶体弹性系数非对角元的计算是可行的。另外 ,本文还对数值计算时 ,初值的选取和检验结果合理性等关键性问题进行了详细的讨论。 Combining numerical calculation and experimental measurement, an approach to measure the complete anisotropic elastic constants [ c_ ij ]([ s_ ij ]) can avoid the troublesome, error-prone determination of off-diagonal constants by the usual measurements along nonprincipal directions. In our present work, the approach is extended from mm 2 symmetry to 3 m symmetry. In order to improve the adaptability and the correctness of numerical calculation, two more stable unconstrained optimization algorithms-simplex and BFGS and the restrict conditions of elastic constants are applied. The elastic constants of LiNbO_3 and LiTaO_3 are used to test the approach, and the results are satisfied. Some important problems during numerical calculating such as the choice of initial values and reasonability of final values are also discussed.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2003年第4期334-338,共5页 Journal of Synthetic Crystals
基金 北京工业大学青年骨干教师基金 (JQ0 60 3 2 0 0 10 1)资助
关键词 无约束最优化 弹性劲度系数 弹性顺服系数 3m点群晶体 弹性系数 unconstrained optimization algorithms elastic stiffnesses elastic compliances 3 m point group crystal
  • 相关文献

参考文献16

  • 1卢绍芳 何美云 黄金陵.偏硼酸钡低温相的晶体结构[J].物理学报,1982,31(7):948-955.
  • 2张鹏翔 刘玉龙 王焕元 董长江.用布里渊散射法测量单晶LiNbO3的声速及其各向异性[J].声学学报,1982,7(1):51-54.
  • 3Nye J F. Physical Properties of Crystals[M]. Clarendon Press, Oxford, 1979: 50-200.
  • 4Ming Lei, Yuanfu Xie. Elastic Constants of a Material with Orthorhombic Symmetry: An Alternative Measurement Approach[J]. J Appl Phys,1994, 76(15) :2738-2741.
  • 5Weston W F. Low-temperature Elastic Constants of a Superconducting Coil Composite[J]. J Appl Phys, 1975, 46(10) :4458-4465.
  • 6Ledbetter H M, Read D T. Orthorhombic Elastic Constants of an NbTi/Cu Composite Superconductor[J]. J Appl Phys, 1977, 48(5 ):1874-1879.
  • 7Read D T, Ledbetter H M. Elastic Properties of a Boron-aluminum Composite at low Temperatures[J]. J Appl Phys, 1977, 48 (7) :2827-2831.
  • 8Totmaki Yamada, Nobukazu Niizeki, Hiroo Toyoda. Piezoelectric and Elastic Properties of Lithium Niobate Single Caystals[J] . Japn J Appl Phys, 1967, 6(2) : 151-155.
  • 9Tomoaki Yamada, Hiroshi Iwasaki , Nobukazu Nhzeki. Piezoelectric and Elastic Propeties of LiTaO3: Temperature Characteristics[J]. Jpn Appl Phys,1969, 8(9): 1127-1132.
  • 10Graham R A. Pressure Dependence of the Piezoelectric Polarization of LiNbO3 and LiTaO3[J]. Ferroelectrics, 1976, 10:65-69.

共引文献2

同被引文献2

  • 1张光寅 杨延勇 吴柏昌.偏硼酸钡晶体晶格振动的群论分析与拉曼光谱.光学学报,1985,5(6):548-556.
  • 2普雷斯W H 弗拉内里B P 托科尔斯基S A et al 王璞 伍渝江译.数值计算大全[M].兰州:兰州大学出版社,1991..

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部