摘要
通过引入最佳平均逼近直线 ,分别从几何直观和极限情形两个角度 ,研究了有限离散函数的导数概念的表现 .结果表明 ,在局部情况下 ,有限离散函数导数近似等于连续情形下的导数 .极限情况下 ,局部范围内一点处有限离散函数的导数就变成了常规情形下的导数 。
By employing the optimum mean approximating line,the derivative behaviors of fin ite discrete function are discussed from the angles of geometry and limit,re spectively.It shows that the derivative of finite discrete function is locally a pproximate to the one under continuous case.Meanwhile,the derivative of finite d iscrete function at a point is limitablely equal to the conventional one and the responding least square line is changed into the optimum mean approximating lin e.
出处
《汕头大学学报(自然科学版)》
2003年第3期13-17,共5页
Journal of Shantou University:Natural Science Edition