期刊文献+

凸性数据的样条修匀及其应用 被引量:1

Spline graduation of convexity data and its applications
下载PDF
导出
摘要 借助于样条技术 ,给出了利用先验信息对初始估计进行修正的新方法 .这些先验信息可以包含数据的凸性以及增减性 .同时讨论了这种数据处理方法在生存分析尤其是精算等领域中的应用 . This paper presents a new revision method towards the initial estimate sequence in accordance with the prior opinions by means of the technique of spline.These prior opinions include the convexity as well as the monotony of the data,meawhile,some significant applications in survival analysis especially in the field of actuarial science are discussed.
作者 许永甲
出处 《长安大学学报(建筑与环境科学版)》 2003年第3期88-91,共4页
关键词 凸性数据 修匀 三次样条 二次规划 convexity data graduation cubic spline survival analysis quadric programming
  • 相关文献

参考文献9

  • 1钱颂迪.运筹学[M].北京:清华大学出版社,1997..
  • 2Lee Elisa T.生存数据分析的统计方法[M].中国统计出版社,1998..
  • 3陈希孺 柴根象.非参数统计方法[M].上海:华东师范大学出版社,1993..
  • 4Carriere J F. Long-term yield rates for actuarial valuations [J]. North American Actuarial Journal,1997,3(3) :13--24.
  • 5London D. Graduation:the revision of estimates[M]. Connecticut : ACTEX Publications, 1985.
  • 6Simonoff J S. Smoothing method in statistics[M].New York :Springer-Verlag,1998.
  • 7Stone C J,Huang J Z. Free knot splines in concave extended linear modeling[J]. Journal of Statistical Planning and Inference, 2002,108 (1 -- 2 ) : 391 -- 409.
  • 8Young V R. Credibility using loss function from spline theory :parametric models with a one-dimensional sufficient statistics [ J ]. North American Actuarial Journal, 1998,2 (1) : 101 -- 117.
  • 9De Boor C A. Practical guide to splines [M]. New York : Springer-Verlag, 1978.

共引文献12

同被引文献14

  • 1London D.修匀数学[M].上海:上海科学技术出版社,2002.
  • 2Eric S S. Algorithms for MWA graduation formulas[ J]. Actuarial Research Clearing House, 1988, 2: 107-114.
  • 3Gavin J B, Haberman S, Verrall R J. Moving weighted average graduation using kernel graduation[ J]. Insurance: Mathemat- ics and Economics, 1993, 12: 113-126.
  • 4Whittaker E T. On a new method of graduation[ A]. Proceedings of the Edinburgh Mathematics Society[ C], 1923, 41 : 63-75.
  • 5Henderson R. A new method of graduation[ J]. TASA, 1924, XXV: 29-40.
  • 6Spiegelhaher D, Best N, Carlin B P, Linde A. Bayesian measures of model complexity and fit [ J]. Journal of the Royal Statistical Society, 2002, 64: 583-639.
  • 7Kimeldorf G S, Jones D A. Bayesian graduation[J]. TSA, 1967, XIX: 66-112.
  • 8Ananda M M, Dalpatadu R J, Singh A K. Estimating parameters of the force of mortality in actuarial studies[ J]. Actuarial Research Clearing House, 1993, 1:129-141.
  • 9Panjer H H, Russo G. Parametric graduation of canadian individual insurance mortality experience: 1982-1986 [ A ]. Preceedings of the Canadian institute of actuaries[ C], 1991, 23 : 378-449.
  • 10Panjer H H, Russo G. Graduation of canadian individual insurance mortality experience: 1986-1992[ A]. Preceedings of the Canadian institute of actuaries[ C ] , 1995, 23 : 277-336.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部