摘要
粒子群优化算法在求解含有多维约束的多目标优化问题时,存在易陷入局部最优解或者全局收敛不唯一,从而造成优化结果的多样性。针对该问题,提出运用数据包络分析算法对采用改进粒子群求解的水火电多目标问题的优化结果进行效益评估,选取有效的决策单元,同时将多个有效单元进行排序,为决策者提供利用优化目标和超效率DEA值双重准则来选取决策方案。实例仿真证明该方法可有效减少多个目标追求下的决策盲目性,为决策者提供了决策选择。
In solving multi-objective optimization problems with multi-dimensional constraints,the particle swarm optimization(PSO) is easy to fall into local optimal solution or global convergence being not unique,that makes the optimization resultbeing diverse. Aiming at this problem,the data envelopment analysis( DEA) algorithm is proposed to evaluate the optimizationresult of improved PSO for hydro-thermal power system scheduling,then the effective scheduling schemes are selected andsorted,and finally the scheduling scheme is selected by decision makers based on the dual criteria of optimizing objective andsuper-efficiency DEA value. The example simulation proves that the method can effectively reduce the blindness of decision-making under multiple targets and provide final choice for decision-makers.
作者
刘文静
付仙兰
吴杰康
沈娜
LIU Wenjing;FU Xianlan;WU Jiekang;SHEN Na(School of Electrical Engineering,Guangzhou College of South China University of Technology,Guangzhou 510800,Guangdong,China;Hubei Xiaogan Power Supply Company,Xiaogan 432100,Hubei,China;School of Automation,Guangdong University of Technology,Guangzhou 510006,Guangdong,China)
出处
《水力发电》
北大核心
2019年第2期98-100,105,共4页
Water Power
基金
国家自然科学基金项目(51567002
50767001)
广东省公益研究与能力建设专项资金项目(2014A010106026)
广东省应用型科技研发专项资金项目(2016B020244003)
广东省特色重点学科建设项目(55-CQ1700003)
关键词
水火优化调度
数据包络分析
效益评估
hydro-thermal power system optimization scheduling
data envelopment analysis
benefit evaluation