摘要
本文运用Goguen提出的L-粗糙模糊集的概念,将粗糙模糊集模型推广到格上。并研究了他们的性质。Hajek(1998)和Turunen(1999)指出,这种代数结构的重要性在于其在模糊逻辑中的重要作用。由于粗糙集理论和语言学在现代逻辑上有着紧密地联系,所以这种理论为构造和研究各类贤达模糊逻辑提供了途径。
In light of the theory of rough approximate set put forward by Goguen the paper applies the pattern of rough approximate set to L - Case and studies their nature.Hajek(1998) and Turunen(1999) pointed out that the importance of this algebra structure lies in its role in approximate logic.Due to the close relationship with regard to current logic between the rough set theory and linguistics the theory offers approaches to structuring and studying all kinds of prominent approximate logic.
出处
《湖北水利水电职业技术学院学报》
2013年第2期49-54,共6页
Journal of Hubei Water Resources Technical College
关键词
广义粗糙模糊集
L-粗糙模糊集
推广
作用
rough approximate set
rough approximate set of L-Case
popularize
function