期刊文献+

基于模糊GJR-GARCH模型的波动率估计 被引量:4

Estimating Volatility based on Fuzzy GJR-GARCH Model
原文传递
导出
摘要 基于模糊数学和模糊时间序列分析理论,在模糊GARCH与GJR-GARCH模型的基础上建立模糊GJR-GARCH模型,并用遗传算法估计了该模型的参数。实证发现沪深两市的收益波动率具有明显的非对称性,相对于普通的GARCH、GJR-GARCH和模糊GARCH模型,模糊GJR-GARCH模型能更好的处理收益率的波动群聚性、时变性和非对称性,具有更好的估计精度。 Based on fuzzy mathematics and fuzzy time series analysis theory,Fuzzy GJR-GARCH model is established by combing Fuzzy GARCH and GJR-GARCH model,the parameters are estimated by genetic algorithm.We found obvious asymmetry in the volatility of return in Shanghai and Shenzhen stock markets.Comparison with GARCH,GJR-GARCH and Fuzzy GARCH model,Fuzzy GJR-GARCH model can obtain good estimation results and describe the clustering,time-varying and asymmetry better.
作者 鲁万波 焦鹏
出处 《数理统计与管理》 CSSCI 北大核心 2014年第3期559-570,共12页 Journal of Applied Statistics and Management
基金 国家自然科学基金项目(71101118) 教育部新世纪优秀人才支持计划(NCET-13-0961) 中央高校基本科研业务费专项资金资助项目(JBK131118、JBK120405)资助
关键词 波动性 模糊时间序列 模糊GARCH模型 遗传算法 volatility fuzzy time series fuzzy GARCH model genetic algorithm
  • 相关文献

参考文献6

二级参考文献58

  • 1王震源,李寿梅.关于Fuzzy值变量的线性回归分析[J].模糊系统与数学,1989,3(1):1-9. 被引量:5
  • 2王丽军,冯玉瑚.模糊线性回归模型的参数估计[J].东华大学学报(自然科学版),2006,32(6):38-42. 被引量:4
  • 3Nguyen H T and Wu B. Fundamentals of Statistics with Fuzzy Data [M]. Berlin: Springer Verlag, 2006.
  • 4Buckley J J. Fuzzy Probability And Statistics [M]. Berlin: Springer Verlag, 2006.
  • 5Cutsem Van B and Gath I. Detection of outliers and robust estimation using fuzzy clustering [J]. Computational Statistics & Data Analysis, 1993, 15(1): 47-61.
  • 6Hathaway R J and Bezdek C. Switching regression models and fuzzy clustering [J]. IEEE Trans. Fuzzy Syst., 1993, 1: 195-204.
  • 7[1]Clymer J P Corey, Gardner J. Discrete Event Fuzzy Airport Control. IEEE Transactions on Systems.Man, and Cybernetics, 1992, 22(2): 343-351
  • 8[2]Cutsem B V, Gath I. Detection of Outliers and Robust Estimation Using Fuzzy Clustering. Computational Statistics and Data Analysis, 1993, 15:47-61
  • 9[3]Hathaway R J, Bezdek J C. Switching Regression Models and Fuzzy Clustering. IEEE Transactions of Fuzzy Systems, 1993, 1:195-204
  • 10[4]Yoshinari Y, Pedrycz W, Hirota K. Construction of Fuzzy Models through Clustering Techniques. Fuzzy Sets and Systems, 1993, 54:157-165

共引文献98

同被引文献76

  • 1许冰,任军峰.基于非参数GARCH模型的一种波动率估计方法[J].统计与决策,2006,22(19):6-7. 被引量:4
  • 2Sklar A. Fonctions de repartition n dimensions et leurs marges [ J]. Publication de 1 ' Institut de Statistique de 1' Universit de Paris, 1959(8) :229 -231.
  • 3Embreehts P. Copulas: a personal view [ J]. Journal of Risk and Insurance, 1999, 76 ( 3 ) :639 - 650.
  • 4Embrechts P, McNeil A, Straumann, D. Correlation: pitfalls and alternatives [J]. Risk, 1999, 12(5):11-21.
  • 5Bedford T, Cooke R M. Probability density decomposition for conditionally dependent random variables modeled by vines [ J ]. Annals of Mathematics and Artificial Intelligence, 2001, 32 ( 1 - 4) :245 - 268.
  • 6Bedford T, Cooke R M. Vines-a new graphical model for dependent random variables [J]. Annals of Statistics, 2002, 30(4) :1031 - 1068.
  • 7Czado C, Aas K. Pair-copula constructions-even more flexible thancopulas [ R]. Working Paper, 2013.
  • 8Allen D E, Ashraf M A, McAleer M, et al. Financial dependence analysis: applications of vine copulae [ R]. Working Paper, 2013.
  • 9Low R K Y, Faff R, Aas K. Mean-variance optimization still works! a Bayesian methodology with vine copulas [ R ]. Working Paper, 2013.
  • 10Low R K Y, Aleoek J, Faff R, et al. Canonical vine copulas in the context of modem portfolio management: are they worth it? [ J]. Journal of Banking & Finance, 2013, 37 ( 8 ) :3085 - 3099.

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部