期刊文献+

因果推断中平均处理效应的估计研究 被引量:3

Research on Estimation of the Average Treatment Effect in Causal Inference
原文传递
导出
摘要 医学、经济等领域的研究常关注某种处理或政策的有效性,并借助于估计处理或政策的平均处理效应及其方差,进行因果推断。Montes-Rojas(2009)已导出简单逆概加权方法得到的平均处理效应估计量的渐近方差公式。但当个体倾向评分取值接近于0或者1时,利用此公式可能会导致估计量及其方差异常大,从而估计量不稳健。本文类比Montes-Rojas(2009)导出渐近方差公式的方法,给出了扩展简单逆概加权方法下平均处理效应估计量渐近方差的计算公式。通过模拟研究,本文进一步验证了所导出的渐近方差公式的正确性及可行性。 The study in the medical,economic and other areas often focus on the effectiveness of a kind of treatment or of policy,and with the help of estimation the average treatment effect and its variance of the treatment or the policy we can draw causal inference.Montes-Rojas(2009) has been derived the asymptotic variance formula of the average treatment effect estimator by simple inverse weighted method.But when the propensity score for individual close to 0 or 1,using this formula could lead to estimator and its variance abnormal,thus the estimator was not robust.This paper imitated the methods of Montes-Rojas(2009) to derive asymptotic variance formula,and deduced the asymptotic variance formula of the average treatment effect estimator by extended simple inverse weighted method.Through the simulation research,we verified the asymptotic variance formula was correct.
作者 韩锋 隋福民
出处 《数理统计与管理》 CSSCI 北大核心 2015年第3期427-433,共7页 Journal of Applied Statistics and Management
关键词 平均处理效应估计量 渐近方差 M估计量 delta方法 average treatment effect(ATE) asymptotic variance M-estimator delta-method
  • 相关文献

参考文献10

  • 1Daniel Westreich,Justin Lessler,Michele Jonsson Funk.Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression[J]. Journal of Clinical Epidemiology . 2010 (8)
  • 2Brian K.Lee,JustinLessler,Elizabeth A.Stuart.Improving propensity score weighting using machine learning[J]. Statist. Med. . 2010 (3)
  • 3Keisuke Hirano,Guido W. Imbens,Geert Ridder.Efficient estimation of average treatment effects using the estimated propensity score. Econometrica . 2003
  • 4Rosenbaum P R,Rubin D B.The central role of the propensity score in observational studies for causal effects[].Biometrika.1983
  • 5PR Rosenbaum,DB Rubin.Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. The American Statistician . 1985
  • 6Donald B. Rubin,Neal Thomas.Matching using estimated propensity scores: Relating theory to practice. Biometrics . 1996
  • 7Efron B.Bootstrap methods: another look at the jackknife[].The Annals of Statistics.1979
  • 8Gabriel Montes-Rojas.A Note on the Variance of Average Treatment Effects Estimators. Economic Bulletin . 2009
  • 9Wooldridge J.M.Econometric Analysis of Cross Section and Panel Data. . 2002
  • 10Agrestic A,Finlay B.Statistical Methods for the Social Sciences. . 1997

共引文献14

同被引文献28

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部