期刊文献+

真空包装鸡肉早餐肠中细菌总数生长预测模型的拟合优度比较 被引量:4

Goodness-of-Fit Comparison of Growth Models for the Total Bacterial Count in Vacuum-Packaged Chicken Breakfast Sausage
下载PDF
导出
摘要 为比较不同生长预测模型对真空包装鸡肉早餐肠中细菌总数生长情况的拟合效果,观察在不同贮藏温度(2~15℃)下,使用Baranyi、修正的Gompertz及修正的Logistic模型分别描述细菌总数随时间变化的情况,以及使用Arrhenius方程与平方根模型描述一级模型所得参数随温度变化的情况。通过计算各模型的评价参数(均方误差平方根RMSE、回归系数R2、赤池信息准则与贝叶斯信息准则),参考模型所得特征值及货架期残差值,评价各模型的拟合优度,寻找最优组合。结果表明:Baranyi模型所得方程的评价参数最优,最大比生长速率(μmax)最大,所得产品货架期残差值较小;应用修正的Gompertz模型更有利于优化二级模型评价参数;而修正的Logistic模型拟合所得初始菌数N0值偏小,且将15℃贮藏组延滞时间λ计算为负值。因此Baranyi模型的拟合优度最高,其次为修正的Gompertz模型,最后为修正的Logistic模型。应用Arrhenius方程与平方根模型均能够成功拟合,但未能得出拟合更优者。 In order to compare the goodness-of-fit of growth models for the total bacterial count in vacuum-packaged chicken breakfast sausage, the primary models Baranyi, modified Gompertz and modified Logistic, and the secondary models Arrhenius and square root equations were chosen for conducting following studies, respectively. They were compared by calculating their indices(such as root mean square error(RMSE), R2, Akaike information criterion and Bayesian information criterion), and the characteristic values and residuals of the shelf life model. Results showed that the Baranyi model exhibited the best performance indices and the highest maximum specific growth rate(μmax) and provided smaller shelf life residuals, while the modified Gompertz model was better in optimizing the secondary model and the modified Logistic model presented the wrong characteristic values. Thus the goodness-of-fit of the Baranyi model was the best, followed by the modified Gompertz model, and the modified Logistic model showed the worst goodness-of-fit. The comparison of Arrhenius equation and square root equation did not draw a conclusion.
出处 《食品科学》 EI CAS CSCD 北大核心 2014年第15期113-117,共5页 Food Science
基金 江苏省科技成果转化专项资金项目(BA2009007) "十二五"农村领域国家科技计划子课题(2012BAD28B01-03)
关键词 预测模型 拟合优度 温度 比较 prediction model goodness-of-fit temperature comparison
  • 相关文献

参考文献11

二级参考文献96

共引文献472

同被引文献63

  • 1傅鹏,马昕,周康,程万鹏,李平兰.热死环丝菌生长预测模型的建立[J].食品科学,2007,28(9):433-437. 被引量:21
  • 2Koutsoumanis K. Predictive modeling of the shelf life of fish under nonisothermal conditions [ J ] . Applied and Environmental Microbiology, 2001,67 (4) : 1821 - 1829.
  • 3Zhou K, Zhong K, Long C, et al. Development and Validation of a Predictive Model for the Growth of Salmonella enterica in Chicken Meat[ J].Journal of Food Safety,2014,34(4) :326-332.
  • 4Lee YJ, Jung BS, Yoon HJ, et al. Predictive model for the growth kinetics of Listeria monocytogenes in raw pork meat as a function of temperature [ J ] .Food Control ,2014,44 ( 8 ) : 16-21.
  • 5Velugoti PR, Bohra LK, Juneja VK, et al. Dynamic model for predicting growth of Salmonella spp. in ground sterile pork [ J ]. Food Microbiology, 2011,28 ( 4 ) : 796- 803,.
  • 6Ye K,Wang H ,Zhang X,et al.Development and validation of a molecular predictive model to describe the growth of Listeria monocytogenes in vacuum - packaged chilled pork [ J ] . FoodControl,2013,32( 1 ) .246-254.
  • 7Peleg M, Corradini MG. Microbial growth curves : what the models tell us and what they cannot[J].Critical Reviews in Food Science and Nutrition, 2011,51 ( 10 ) : 917-45.
  • 8Gill C, Dussauh F, Holley R, et al.Evaluation of the hygienic performances of the processes for cleaning, dressing and cooling pig carcasses at eight packing plants [ J ]. International Journal of Food Microbiology ,2000,58 ( 1 ) :65-72.
  • 9Farouk MM, Kemp RM, Cartwright S, et al. The initial freezing point temperature of beef rises with the rise in pH:A short communication[ J].Meat Science,2013,94( 1 ) :121-124.
  • 10Hong Y-K, Huang L, Yoon WB.Mathematical modeling and growth kinetics of Clostridium sporogenes in cooked beef[ J] .Food Control,2016,60 (7) :471-477.

引证文献4

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部