期刊文献+

基于高光谱技术的铁观音茶叶等级判别 被引量:12

Identification of Tieguanyin Tea Grades Based on Hyperspectral Technology
下载PDF
导出
摘要 应用高光谱技术结合支持向量机分类理论对不同等级的铁观音茶叶进行判别分析。采集铁观音各等级茶样的高光谱数据,提取红边幅值、蓝边位置、黄边面积、红谷反射率、归一化植被指数等共20个光谱特征参数,以其作为输入量带入以径向基函数作为核函数的支持向量机分类模型,探讨惩罚参数C和核参数g的最佳取值,构建判别模型,并对其进行验证和评价。结果显示,当惩罚参数C和核参数g分别为106和0.007 5时,所建模型对未知等级的铁观音样品正确判别率可达92.86%,表明应用高光谱技术进行铁观音茶叶等级的快速无损准确鉴别是可行的。 Hyperspectral technology combined with support vector machine(SVM) as a classification theory was applied to identify the grades of Tieguanyin tea. Twenty characteristic spectral parameters were extracted based on the hyperspectral data of tea samples, including red edge amplitude, blue edge position, yellow edge area, red valley reflectivity, normalized difference vegetation indexes, etc. The optimal values for the penalty parameter(C) and the kernel parameter(g) were determined based on the SVM classification model with the radial basis function(RBF) as the kernel function by using these characteristic spectral parameters as the inputs. An identification model for Tieguanyin tea grades was constructed and verified. The best experimental results were obtained using the RBF SVM classifier with C = 106 and g = 0.007 5. The discrimination accuracy rate for unknown Tieguanyin tea samples was 92.86%, suggesting that hyperspectral technology can be utilized for rapid, nondestructive and accurate identification of Tieguanyin tea grades.
出处 《食品科学》 EI CAS CSCD 北大核心 2014年第22期159-163,共5页 Food Science
基金 "十二五"国家科技支撑计划项目(2011BAD01B03-3) 2013年教育部高等学校博士学科点专项科研基金项目(20133515110006)
关键词 高光谱技术 支持向量机 铁观音 等级判别 hyperspectral technology support vector machine(SVM) Tieguanyin grade identification
  • 相关文献

参考文献17

  • 1甘芝霖,刘远方,杨阳,张树明,陈芹芹,倪元颖.基于电子舌技术对信阳毛尖茶品质的评价[J].食品工业科技,2013,34(3):74-76. 被引量:13
  • 2吴瑞梅,吴彦红,艾施荣,刘木华,赵杰文,严霖元.茶叶外形品质的高光谱图像量化分析[J].江西农业大学学报,2013,35(2):413-418. 被引量:17
  • 3Guangxin Ren,Shengpeng Wang,Jingming Ning,Rongrong Xu,Yuxia Wang,Zhiqiang Xing,Xiaochun Wan,Zhengzhu Zhang.Quantitative analysis and geographical traceability of black tea using Fourier transform near-infrared spectroscopy (FT-NIRS)[J].Food Research International.2012
  • 4马建红,姬莉霞,卫权岗.基于多智能体的茶叶图像等级鉴定技术研究[J].计算机仿真,2012,29(7):297-299. 被引量:7
  • 5陈哲,赵杰文.基于电子鼻技术的碧螺春茶叶品质等级检测研究[J].农机化研究,2012,34(11):133-137. 被引量:38
  • 6Anatoly A. Gitelson,Yoram J. Kaufman.MODIS NDVI Optimization To Fit the AVHRR Data Series—Spectral Considerations[J].Remote Sensing of Environment.1998(3)
  • 7Di Wu,Haiqing Yang,Xiaojing Chen,Yong He,Xiaoli Li.Application of image texture for the sorting of tea categories using multi-spectral imaging technique and support vector machine[J].Journal of Food Engineering.2008(4)
  • 8J. A. FernándezPierna,V.Baeten,A. MichotteRenier,R. P.Cogdill,P.Dardenne.Combination of support vector machines (SVM) and near‐infrared (NIR) imaging spectroscopy for the detection of meat and bone meal (MBM) in compound feeds[J].J Chemometrics (鈥?).2005(7鈥?)
  • 9Quansheng Chen,Zhiming Guo,Jiewen Zhao,Qin Ouyang.Comparisons of different regressions tools in measurement of antioxidant activity in green tea using near infrared spectroscopy[J].Journal of Pharmaceutical and Biomedical Analysis.2011
  • 10蒋帆,乔欣,郑华军,杨庆华.基于高光谱分析技术的机炒龙井茶等级识别方法[J].农业工程学报,2011,27(7):343-348. 被引量:21

二级参考文献136

共引文献280

同被引文献203

引证文献12

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部