期刊文献+

基于Split-Bregman方法的稀疏角度CT重建算法研究 被引量:1

Study on Split- Bregman algorithm for sparse-view CT reconstruction
下载PDF
导出
摘要 离散梯度变换已被广泛地用作稀疏算子,相应的全变差(TV)最小化方法也被用于基于压缩感知(CS)的CT重建中.与此同时Split-Bregman算法在求解L1正则化问题方面引起了很大关注,此方法对原来的L1正则化问题引入一个分裂变量后利用Bregman迭代求解.本文将Split-Bregman方法用于稀疏角度CT重建,并与传统的SART和基于SART的软阈值算法(STF-SART)进行比较,最后用Head模型作为测试模型进行仿真实验,实验结果表明:对于稀疏角度CT重建问题,TV正则化(STF-SART和Split-Bregman)算法明显优于传统的SART算法,且Split-Bregman算法在收敛速度和重建图像质量方面又优于STF-SART算法. The TV minimize technique which corresponds to Discrete Gradient transform is widely used in the CT reconstruction basing on CS, including sparse -view reconstruction based on compressed sensing (CS).Meanwhile, Split-Bregman algorithm has caused great concern in solving L1 regularization issues , this method first introduces a split variation to the original regularized problem and then use Bregman iterative solve it .In this paper , we apply the Split -Bregman approach to reconstruct an ROI for the CS -based sparse -view CT reconstruction , and combined with the traditional SART algorithms and soft thresholding algorithm based on SART ( STF-SART ) . Finally Head model is applied as a test model to the simulation experiment ,and the results shows that:for sparse-view CT reconstruction , TV regularization ( STF-SART and Split-Bregman) algorithms outperform conventional SART algorithm, and Split-Bregman algorithm is superior to STF -SART algorithmsn terms of convergence speed and reconstructed image quality .
作者 张丹丹
出处 《商丘师范学院学报》 CAS 2016年第3期13-16,共4页 Journal of Shangqiu Normal University
关键词 离散梯度变化 压缩感知 稀疏角度CT TV最小化 Split-Bregman算法 gradient descent algorithm compressive sensing sparse-view CT TV minimization Split-Bregman algorithm
  • 相关文献

参考文献9

  • 1阙介民,王燕芳,孙翠丽,魏存峰,史戎坚,魏龙.基于不完备投影数据重建的四种迭代算法比较研究[J].CT理论与应用研究(中英文),2012,21(2):169-178. 被引量:23
  • 2吴俊峰,牟轩沁,张砚博.一种快速迭代软阈值稀疏角CT重建算法[J].西安交通大学学报,2012,46(12):24-29. 被引量:5
  • 3吴长岳,孔慧华.基于L_p算子的CT迭代重建算法研究[J].核电子学与探测技术,2014,34(4):509-512. 被引量:3
  • 4Sidky, Emil Y.,Kao, Chien-Min,Pan, Xiaochuan.Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. Journal of X-Ray Science and Technology . 2006
  • 5Donoho,David L.Compressed sensing. IEEE Transactions on Information Theory . 2006
  • 6Jian-Feng Cai,Stanley Osher,Zuowei Shen.??Linearized Bregman iterations for compressed sensing(J)Mathematics of Computation . 2008 (267)
  • 7Hengyong Yu,Ge Wang.??A soft-threshold filtering approach for reconstruction from a limited number of projections(J)Physics in Medicine and Biology . 2010 (13)
  • 8Wotao Yin,Stanley Osher,Donald Goldfarb,Jerome Darbon.Bregman iterative algorithms for $\ell1$-minimization with applications to compressed sensing. SIAM J. Imaging Sci . 2008
  • 9Nocedal J,Wright S J.Line search methods. Numerical optimization . 2006

二级参考文献39

  • 1张全红,路宏年,杨民,傅健.用对称反投影及递归迭代实现扇束CT快速重建[J].CT理论与应用研究(中英文),2004,13(4):16-19. 被引量:9
  • 2高河伟,张丽,陈志强,程建平.有限角度CT图像重建算法综述[J].CT理论与应用研究(中英文),2006,15(1):46-50. 被引量:15
  • 3陈希,牟轩沁,杨莹.一种从衰减数据重建X射线球管光谱的方法[J].西安交通大学学报,2006,40(10):1056-1059. 被引量:3
  • 4Boone JM, Nelson TR, Lindfors KK, et al. Dedicated breast CT: Radiation dose and image quality evaluation[J]. Radiology, 2001, 221(3): 657-667.
  • 5Kaczmarz S. Angengherte auflSsung von systemen linearer gleichungen[J]. Bulletin International de l'Acadmie Polonaise des Sciences et des Lettres. Classe des Sciences Math4matiques et Naturelles. Sarie A, Sciences Mathmatiques, 1937, 35: 355-357.
  • 6Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data[J]. IEEE Transaction on Medical Imaging. 1994, 13(4): 601-609.
  • 7Schmidlin P, Matthias EB, Gunnar B. Subsets and overlaXation in iterative image reconstruction[J]. Physics in Medicine and Biology, 1999, 44(5): 1384-1396.
  • 8Sidky EY, Kao CM, Pan XC. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[J]. Journal of X-Ray Science and Technology, 2006, (14): 119-139.
  • 9Bouman CA. A unified approach to statistical tomography using coordinate descent optimization IEEE Trans[J]. Image Processing, 1996, 5(3): 480-492.
  • 10Bouman CA, Sauer K. A generalized Gaussian image model for edge-preserving MAP estimation, IEEE Trans[J]. Image Processing, 1993, 7(2): 296-310.

共引文献32

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部