期刊文献+

一种基于数据挖掘的GIS及在航海中的应用 被引量:5

A Data Mining Method for GIS in Marine Engineering
下载PDF
导出
摘要 根据聚类分析方法中密度凝聚的思想 ,提出一种新的复合聚类分析算法 ,进一步将这种算法用于地理信息系统的数据挖掘 ,并应用于船舶航线的自动设计。 This paper presents a new integrated clustering analysis algorithm to extract data patterns from database of GIS. The basic idea is that k-means algorithm is merged into desnity method and then the shortage in redundant initiali- zation can be overcome when only one of the methods is used. Also, its applications in the data mining of GIS is discussed. Some analyzed results show that ship-routing automatic design can be much improved by using the fusion clustering algorithm in database of GIS.
出处 《中国航海》 CSCD 北大核心 2003年第3期1-4,共4页 Navigation of China
基金 中法国际合作项目 上海市教委重点学科沪教委科 (2 0 0 1) 71资助
关键词 数据挖掘 GIS 聚类分析 复合算法 地理信息系统 船舶航线设计 自动设计 航海技术 Automation Control technique Clustering analysis Fusion algorithm Accumulation point Data mining GIS
  • 相关文献

参考文献2

  • 1Xue Z. Wang. Data Mining and Knowledge Discovery for Process Monitoring and Control [ M ]. Spring-Verlag London limited, 1999.
  • 2M. F. Goodchild. Geographic data modeling[C], lomputers and Geoseiences, 18(4), 1992. 401-408.

同被引文献45

  • 1郝瑞吉,汤天浩,王天真.基于DM和OLAP的地理信息决策支持系统研究[J].复旦学报(自然科学版),2004,43(5):755-757. 被引量:2
  • 2安若铭,姜兴渭.基于参数估计的层次诊断模型研究及应用[J].系统仿真学报,2006,18(4):1078-1080. 被引量:6
  • 3王天真,汤天浩,文成林,黄洪琼.相对主元分析方法及其在故障检测中的应用[J].系统仿真学报,2007,19(13):2889-2894. 被引量:7
  • 4The k-means clustering problem [EB/oL]. PDF: [2009 11-021. http://cseweb, ucsd. edu/- dasgupta/ 291/lec2. pdf.
  • 5Davi dArthurandandSergeiVassilvitskii, k-means + + :The Advantages of Careful Seeding[C]. Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms, 2007.
  • 6Charles Elkan. Using the Triangle Inequality to Accelerate k - Means[R]. Proceedings of the Twenti- eth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.
  • 7New Efficient Strategy to Accelerate k-means Clustering Algorithm[J]. American Journal of Applied Sci- ences 5(9) :1247-1250, 2008.
  • 8Frank Nielsen. Computational Information Geometry From Euclidean to dually flat spaces[R], the 2009 French Computational Geometry days, 2009.
  • 9XIA Shi-xiong, LI Wen-chao, ZHOU Yong, et al. Improved k-means clustering algorithm[J]. Journal of Southeast University, 2007(3) :435-438.
  • 10Nguyen Xuan Vinh and Julien Epps. A novel Approach for Automatic Number of Clusters Detection in Microarray Data base on Consensus Clustering[R]. 2009 Ninth IEEE International Conference on Bioin- formatics and Bioengineering.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部