期刊文献+

基于人工鱼群算法的反坦克火力分配模型研究 被引量:1

Research on Anti-Tank Firepower Assignment Model Based on Artificial Fish Swarm Algorithm
原文传递
导出
摘要 人工鱼群算法是一种新型仿生随机搜索全局优化方法,用以解决传统火力分配模型不易求解的问题.在建立反坦克火力分配数学模型的基础上,运用人工鱼群算法对模型进行了最优化求解,并采用基于升序排列的操作方法,实现从人工鱼群算法的连续变量到武器目标分配离散序列的转换.实例的计算结果表明,该优化算法对于模型的求解具有较好的收敛性,为解决火力优化分配问题提供了参考. Artificial fish swarm algorithm ( AFSA ) is a new bionic random searching global optimization technology.To resolve the difficulties in solving the traditional firepower assignment model , the AFSA is introduced.Based on the developed mathematic model of anti-tank firepower assignment , enhanced AFSA is adopted to work out the optimal solution.It uses ascending order based operation method to achieve the conversion from the continuous variables in the AFSA to the discrete sequences in the weapon target assignment.The practical calculation results show that the algorithm has good convergence and provides references to solve such problems.
机构地区 南昌陆军学院
出处 《浙江树人大学学报(自然科学版)》 2013年第1期6-10,共5页 Journal of Zhejiang Shuren University(Acta Scientiarum Naturalium)
关键词 反坦克 火力分配 人工鱼群算法 Anti-tank firepower assignment artificial fish swarm algorithm ( AFSA )
  • 相关文献

参考文献3

二级参考文献16

  • 1李晓磊,路飞,田国会,钱积新.组合优化问题的人工鱼群算法应用[J].山东大学学报(工学版),2004,34(5):64-67. 被引量:163
  • 2王锡淮,郑晓鸣,肖健梅.求解约束优化问题的人工鱼群算法[J].计算机工程与应用,2007,43(3):40-42. 被引量:23
  • 3戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.
  • 4PISINGER D. An exact algorithm for large muhiple knapsack problems [ J]. European Journal of Operational Research, 1999, 114 (3) : 528 -541.
  • 5BALEV S, YANEV N, FREVILLE A, et al. A dynamic programming based reduction procedure for the multidimensional 0-1 knapsack problem [ J]. European Journal of Operational Research, 2008, 186(1) : 63 -76.
  • 6FLESZAR K , HIND1 K S . Fast , effective heuristics for the 0 - 1 multi-dimensional knapsack problem [ J]. Computers & Operations Research, 2009, 36(5) : 1602 - 1607.
  • 7KONG MIN, TIAN PENG, KAO YU-CHENG. A new ant colony optimization algorithm for the multi-dimensional knapsack problem [J]. Computers & Operations Research, 2008, 35(8): 2672 - 2683.
  • 8WILSON S. The animat path to AI[A]. Proceedings of the First International Conference on the Simulation of Adaptive Behavior[C]. Cambridge: MIT Press, 1991.
  • 9JEFFREY D. Animats and what they car tell us[J]. Trends in Cognitive Sciences, 1998,2(2): 60-67.
  • 10BONABEAU E, THERAULAZ G. Swarm smarts[J]. Scientific American, 2000,282(3) :72-79.

共引文献957

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部