期刊文献+

基于网页主题相关度和标签相似度的改进PageRank算法研究 被引量:1

Research on Improved PageRank Algorithm Based on Web Subject Relevance and Tag Similarity
原文传递
导出
摘要 文章将PageRank算法与社会化标签进行结合,提出一种基于链接网页主题之间相关度和社会化标签之间相似度的改进PageRank算法.首先基于信息特征词构建向量空间模型,通过余弦值和TF-IDF算法计算网页主题相关度;然后建立社会化标签向量计算链接网页标签相似度;最后确定权重关系进行算法迭代,从而实现Web页面的重新排序.实验表明,该算法能提高信息推荐的准确性,但算法质量不稳定,推荐效果呈下降趋势. Combining PageRank algorithm and social tags,this paper proposes an improved PageRank algorithm based on the relevance between each linked web page topic and the similarity between social tags.A vector space model based on information feature words is established,and the topic relevance of web pages is calculated by cosine and TF-IDF algorithm.Social tags vector are then established to calculate the relevance of linked web page tags,and finally the weight is determined to iterate the algorithm to reorder the Web pages.Experimental results show that this algorithm can improve the accuracy of information recommendation,but the quality of the algorithm is unstable so the recommendation effect is decreasing.
作者 傅丽君 FU Lijun(Taizhou Vocational and Technical College,Taizhou,Zhejiang,318000,China)
出处 《浙江树人大学学报(自然科学版)》 2019年第1期12-17,共6页 Journal of Zhejiang Shuren University(Acta Scientiarum Naturalium)
基金 台州职业技术学院课题项目(2018QN09) 台州市教科规划课题项目(gg18012)
关键词 社会化标签 PAGERANK算法 相关度计算 信息推荐 social tag PageRank algorithm relevance calculation information recommendation
  • 相关文献

参考文献8

二级参考文献105

  • 1徐京,陶皖.一种改进的PageRank算法[J].长江大学学报(自科版)(上旬),2013,10(10):51-53. 被引量:1
  • 2杨彬,康慕宁.基于概念的权重PageRank改进算法[J].情报杂志,2006,25(11):70-72. 被引量:10
  • 3Ma H, King I, Lyu M. Learning to recommend with social trust ensemble/ /Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Boston, USA, 2009: 203-210.
  • 4Ma H, Zhou D, Liu C, et al. Recommender systems with social regularization/ /Proceedings of the 4th ACM International Conference on Web Search and Data Mining. Hong Kong, China, 2011: 287-296.
  • 5Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks/ / Proceedings of the 4th ACM Conference on Recommender Systems. Barcelona, Spain, 2010: 135-142.
  • 6Bell R, Koren Y, Volin sky C. Modeling relationships at multiple scales to improve accuracy of large recommender systems/ /Proceedings of the 13th ACM SIGKDD Internationa I Conference on Knowledge Discovery and Data Mining. San Jose. USA. 2007: 95-104.
  • 7Onuma K. Tong H. Faloutsos C. Tangent: A novel'. surprise me'. recommendation algorithm/ /Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris. France, 2009: 657-666.
  • 8Musto C. Enhanced vector space models for content-based recommender systems/ /Proceedings of the 4th ACM Conference on Recommender Systems. Barcelona. Spain. 2010: 361-364.
  • 9Song Y. Zhuang Z, Li H, et al. Real-time automatic tag recommendation / /Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Singapore. 2008: 515-522.
  • 10Massa P. Avesani P. Trust-aware collaborative filtering for recommender systems/ /Meersman R. Tari Zeds. On the Move to Meaningful Internet Systems 2004: Coopl'S, DOA, and ODBASE. Italy: Springer Berlin Heidelberg, 2004: 492-508.

共引文献154

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部