摘要
利用一种函数变换与第一种椭圆方程相结合的方法,构造了常系数耦合mKdV方程的由Riemann θ函数、Jacobi椭圆函数、双曲函数和三角函数两两组合的双孤子解、双周期解以及孤子解与周期解组合的无穷序列复合型新解.
The method for combining a kind of a function transformation and the first kind of elliptic equation is presented to construct the new infinite sequence complexion solutions to couple mKdV equation of constant coefficients,which are composed of two-soliton solutions,two-period solutions,soliton solutions and period solutions in any two functions of Riemannθfunction,Jacobi elliptic function,hyperbolic function and trigonometric function.
作者
套格图桑
Taogetusang(The College of Mathematical Science,Inner Mongolia Normal University,Huhhot 010022,China;The College of Mathematical,Inner Mongolia University for Nationalities,Tongliao 028043,China)
出处
《数学的实践与认识》
北大核心
2019年第6期208-216,共9页
Mathematics in Practice and Theory
基金
国家自然科学基金(11361040)
内蒙古自治区自然科学基金(2015MS0128)
内蒙古自治区高等学校科学研究基金(NJZY16180)
内蒙古民族大学科学研究基金项目(NMDGP1713)
关键词
常系数耦合mKdV方程
函数变换
无穷序列复合型新解
couple mKdV equation of constant coefficients
a function transformation
new infinite sequence complexion solutions