期刊文献+

基于字典学习和TV的能谱CT重建算法 被引量:2

Spectral CT Reconstruction Algorithm Based on Dictionary Learning and Total-Variation
原文传递
导出
摘要 能谱CT可以将较宽的能谱数据划分为几个单独的窄谱数据,从而同时获得多个能量通道下的投影.但由于窄谱通道内接收到的光子数较少,投影通常包含较大的噪声.针对这一问题,基于压缩感知理论提出了一种基于字典学习和全变分TV(total-variation)的迭代重建算法用于能谱CT重建,应用交替最小化方法优化相关目标函数,并采用Split-Bregman算法求解.同时,采用有序子集方法加速迭代收敛过程,提高运算速率.为了验证和评估所提出的方法,使用简单模型和实际临床小鼠模型进行了仿真实验,实验结果表明,所提出的算法有较好的去噪及细节保存能力. Spectral CT can divide the broad energy data into several separate narrowenergy data.Therefore,it is possible to obtain projections under multiple energy channels simultaneously.But the narrow energy channel of spectral CT only contains a small part of photons,the projection usually contains very strong noise.In order to solve this problem,this paper proposes an iterative reconstruction algorithm based on dictionary learning and TV regularization item for spectral CT reconstruction,which relies on the theory of compressed sensing.Apply the alternating minimization method to optimize the related objective function and solve it by Split-Bregman algorithm.At the same time,the ordered subset method is used to accelerate the iterative convergence process and improve the operation rate.In order to validate and evaluate the proposed method,a simulation experiment was performed using a simple model and an actual clinical mouse model.The experimental results show that the proposed algorithm has a better denoising and detail preservation ability.
作者 张雁霞 孔慧华 孙英博 ZHANG Yan-xia;KONG Hui-hua;SUN Ying-bo(School of Science,North University of China,Taiyuan 030051,China)
机构地区 中北大学理学院
出处 《数学的实践与认识》 北大核心 2019年第7期152-160,共9页 Mathematics in Practice and Theory
基金 国家自然科学基金(61601412 61571404 61471325) 山西省自然科学基金(2015021099) 山西省优秀青年学术带头人
关键词 能谱CT 图像重建 压缩感知 TV 字典学习 spectral CT image reconstruction compressed sensing TV dictionary learning
  • 相关文献

参考文献2

二级参考文献2

共引文献11

同被引文献15

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部