期刊文献+

拟Hermite插值对解析函数类的逼近误差 被引量:1

The Approximation Errors of Quasi-Hermite Interpolation to an Analytic Function Class
原文传递
导出
摘要 在最大框架下研究基于第二类Tchebyshev节点组的拟Hermite插值算子和Hermite插值算子对一个解析函数类的逼近误差.对于一致范数,我们得到了相应量的精确值.对于L_p-范数(1≤p<∞),我们得到了相应量的值或强渐近阶. In this paper we considered the approximation errors of Quasi-Hermite interpolation and Hermite interpolation to an analytic function class in the worst case setting.For the uniform norm,we obtained the exact values.For the L_p-norm(1≤p<∞),we obtained the values or the strong asymptotic order.
作者 汪晖 胡增周 许贵桥 WANG Hui;HU Zeng-zhou;XU Gui-qiao(School of Math Sci,Tianjin Normal Universi ty,Tianjin 300387,China;Hebei Urban and Countryside Construction School,Heibei Shi Jiazhuang 050031,China)
出处 《数学的实践与认识》 北大核心 2019年第7期186-191,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(11871006)
关键词 拟Hermite插值 最大框架 逼近误差 解析函数类 Quasi-Hermite interpolation worst case setting approximation error analytic function class
  • 相关文献

参考文献2

二级参考文献9

  • 1Lorentz GG.Bernstein Polynomials. . 1953
  • 2Traub JF,Wasilkowski GW,Wozniakowski H.Information-Based Complexity. . 1988
  • 3Varma A K,Prasad J.An analogue of a problem of p Erd s and e Feldheim on lp convergence of interpolatory process. Journal of Approximation Theory . 1989
  • 4Ritter,K.Approximation and optimization on the Wiener space. Journal of Complexity . 1990
  • 5Ritter K.Average-case analysis of numerical problems. Lecture Notes in Mathematics . 2000
  • 6Sun Y.S,Wang C.Y.Average error bounds of best approximation of continuous functions on the Wiener space. Journal of Complexity . 1995
  • 7VarmaAK,VertesiP.SOmeErdos-FeldheimtypetheoremsonmeanconvergenceofLagrangeinterpolation. JMathAnalAppl . 1983
  • 8DEVORE R A,LORENTZ G G.Constructive Approximation. . 1993
  • 9Bojanic R,Prasad J,Saxena R B.An upper bound for the rate of convergence of the Hermite-Fejr process on the extended Chebyshev nodes of the second kind. Journal of Approximation Theory . 1979

共引文献15

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部