摘要
在交换的零和自由半环上,首先讨论了半线性空间V_n中向量组线性相关性的一些性质,并给出向量组中极大线性无关组所含向量个数相同的条件.其次通过对半环<R^+,+,.,0,1>上生成子空间基的讨论,给出了向量组的极大线性无关组含相同向量个数的条件.最后对<R^+,+,.,0,1>上生成子空间的维数进行详细讨论并给出相应的结果.
In this paper,we first discuss some properties of linear relation of vector groups in semilinear space V_n over zerosumfree semirings,and give some conditions that each maximum linear independence group has the same number of elements.Then we discuss the bases of generated subspace over semiring<R^+,+,·,0,1>,and prove that each maximum linear independence group has the same number of elements.Finally,we study the dimension of generated subspace over(R^+,+,·,0,1>and the corresponding results.
作者
许小珠
李玉瑛
XU Xiao-zhu;LI Yu-ying(College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China)
出处
《数学的实践与认识》
北大核心
2019年第7期196-202,共7页
Mathematics in Practice and Theory
基金
国家自然科学青年基金(11501402)
关键词
半线性空间
线性无关
极大线性无关组
基
semilinear space
linear independence
maximum linear independence group
basis