摘要
讨论了一类具有体液免疫的宿主内部和宿主之间疾病传播耦合模型.首先使用极限系统思想,将模型分解成宿主内的快时间子模型和宿主间的慢时间子模型.对快时间子模型,得到了平衡点的存在性,并使用李雅普诺夫函数方法建立了平衡点全局稳定性的阈值条件.对慢时间子模型,当宿主内抗体不发生作用时,得到模型可能存在后向分支;而当宿主内抗体发生作用时,建立了平衡点全局稳定性的阈值条件.因此,宿主内抗体对控制宿主间疾病的传播具有非常重要的作用,特别地当宿主内抗体细胞达到一定水平时,可以使宿主之间的疾病灭绝.
In this paper,we propose a infectious disease model with humoral immunity coupling within-and between-host dynamics.By using the methods of limiting system,we separate the model into the fast subsystem within-host and the slow subsystem between-host.For the fast system,we obtain the existence of equilibriums and establish the threshold conditions of global stabilities of equilibriums by using the method of Lyapunov functions.For slow system,when antibodies in host don’t react,we obtain that there may exist a backward bifurcation.However,when antibodies in host react,we establish the threshold conditions of global stabilities of equilibriums.Therefore,antibodies in host play an important role in controlling the spread of disease.Specifically,when the density of antibodies in host reach a certain level,the disease between hosts will die out.
作者
唐思甜
滕志东
TANG Si-tian;TENG Zhi-dong(College of Mathematics and System Sciences,Xinjiang University,Urumqi 830001,China)
出处
《数学的实践与认识》
北大核心
2019年第7期276-287,共12页
Mathematics in Practice and Theory
基金
国家自然科学基金(11771373)
关键词
宿主体内病毒染病模型
宿主之间疾病传播模型
传染病耦合模型
抗体作用
稳定性
virus infection model within-host
epidemic model between-host
coupled system of infectious disease
effects of antibodies
stabilities