期刊文献+

基于改进ICP算法的曲面特征配准研究 被引量:3

Research on Surface Feature Registration Based on Improved ICP Algorithm
原文传递
导出
摘要 随着3D激光扫描技术的发展,点云数据的应用越来越广泛.然而点云配准一直是点云数据预处理过程中的一个关键问题.目前ICP算法是实现点云配准的主流算法.然而面对数据量大、噪声大的点云数据时,ICP算法在执行的配准效率和执行效果上不够理想.本文通过PCA算法,提取了点云数据集的方向向量,根据源数据与目标数据的方向向量,初步设定了旋转矩阵R的值.此外,定义了源数据与目标数据的曲面距离,在此基础上改进了传统的ICP算法.将改进后的ICP算法成功的应用到点云数据配准中来,提高了点云数据的配准效果,并压缩了算法的执行时间. With the development of 3 D laser scanning technology,the application of point cloud data becomes increasingly wider.However,point cloud registration has always been a critical problem in point cloud data preprocessing.Now,The ICP is the popular algorithm for point cloud registration.However,in the face of large amount volume data or noise’s disturbance,the ICP is not ideal for registration efficiency and effectiveness.In this paper,the direction vectors of point cloud data set are extracted by PCA algorithm.And the value of rotation matrix R is preliminarily set according to the direction vectors of source data and target data.Besides,this paper defines the surface distance between the source data and the target data.On this basis,the traditional ICP algorithm is improved.The improved ICP algorithm is successfully applied to point cloud data registration,and improved the registration efficiency and compressed the running time in point cloud registration.
作者 乔世权 张坤 QIAO Shi-quan;ZHANG Kun(School of Information Science and Engineering,Hebei University of Science and Technology,Shijiazhuang 050018,China)
出处 《数学的实践与认识》 北大核心 2019年第8期135-143,共9页 Mathematics in Practice and Theory
基金 河北省教育厅青年基金(QN2014174)
关键词 点云数据 PCA算法 ICP算法 配准 point cloud data PCA algorithm ICP algorithm registration
  • 相关文献

参考文献5

二级参考文献49

  • 1何海,汤春林,孙华燕.双目立体视觉在模型姿态监测中的应用研究[J].计算机技术与发展,2006,16(11):238-240. 被引量:3
  • 2罗胜.基于机器视觉的鞋楦数字化及类似方法对比[J].工程设计学报,2007,14(1):57-61. 被引量:3
  • 3王荣本,张明恒,石德乐.双目视觉技术在目标测量中的应用[J].公路交通科技,2007,24(2):122-125. 被引量:22
  • 4Kim Sungiin,Choi Seungioon. The Coil recognition systemfor an unmarmed crane usingstereovision[C]//The 30th Annual Conference of the IEEE industrial ElectronicsSociety. Busan: [s.n.],2004:1235 - 1239.
  • 5Fusiello A. Uncalibrated euclidean reconstruction[J]. Image and Vision Computing, 2000,18 (7) : 555 - 563.
  • 6Wang C C L, Chang T K K, Yuen M M F. From laser - scanned data to feature human model: a system based on fuzzy logic concept[ J ]. Compute - Aid Design, 2003,35 (3) : 241 - 253.
  • 7Jebara T S,Pentland A. Parameterized structure from motion for 3D adaptive feedback tracking of faces[C]//CVPR. [s. l. ] :[s. n. ],1997.
  • 8Brunig M, Niehsen W. Fast Full - Search Block Matching[J ]. IEEE Trans CSVT, 2001, 11(2) : 241 - 247.
  • 9Scharstein D, Szeliski R. A taxonomy and evaluation of dense two frame Stereo correspondence algorithms[ J ]. International Journal of Computer Vision, 2002,47 ( 1/2/3) : 7 - 42.
  • 10路银北,张蕾,普杰信,杜鹏.基于曲率的点云数据配准算法[J].计算机应用,2007,27(11):2766-2769. 被引量:15

共引文献57

同被引文献29

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部