摘要
针对大米供应链中黄曲霉菌的定量风险评估分析时间过长等问题,提出了一种基于贝叶斯网络推理与微生物生长预测模型结合的快速风险评估的建模方法。该模型通过贝叶斯公式得到各节点的联合风险概率分布,并将黄曲霉菌的生长预测模型加入供应链节点中,进而得出各节点黄曲霉菌风险概率的解析解。最后通过对供应链中不同温度下黄曲霉菌的风险概率对比进行案例验证。结果表明,该方法能快速有效地反映供应链节点的风险概率,为企业在生产流通过程中预防和管理安全风险提供有力的工具,具有重要的理论和应用价值。
Considering the problem of long-term quantitative risk assessment of Aspergillus flavus in the rice supply chain,a rapid risk assessment modeling method based on Bayesian network inference and microbial growth prediction model is proposed.This model obtains the joint risk probability distribution of each node through the Bayesian formula,and adds the Aspergillus growth prediction model to the supply chain node,and then obtains the analytical solution of the risk probability of Aspergillus flavus at each node.Finally,a case study is performed by comparing the risk probabilities of Aspergillus flavus at different temperatures in the supply chain.The results show that this method can quickly and effectively reflect the risk probability of supply chain nodes,and provide a powerful tool for enterprises to prevent and manage security risks in the process of production and circulation,which has important theoretical and application values.
作者
许继平
宋海燕
赵峙尧
王小艺
陈谦
XU Jiping;SONG Haiyan;ZHAO Zhiyao;WANG Xiaoyi;CHEN Qian(School of Computer and Information Engineering,Beijing Technology and Business University,Beijing 100048)
出处
《食品科技》
CAS
北大核心
2019年第4期326-332,共7页
Food Science and Technology
基金
国家重点研发计划项目(2017YFC1600605)
科技创新服务能力建设﹣基本科研业务费项目(PXM2018_014213_000033)
北京市属高校高水平教师队伍建设支持计划项目(CIT&TCD201804014)
关键词
黄曲霉菌
风险概率
大米供应链
风险评估
Aspergillus flavus
risk probability
rice supply chain
risk assessment