期刊文献+

瞬态加速液柱的流体力学问题研究 被引量:15

Fluid mechanics in the transient acceleration of a liquid column
下载PDF
导出
摘要 介绍了用激波和压缩气体加速液柱时的流体动力现象的实验研究,实验中采用了高速摄影技术。研究分为两部分:第一部分,液柱在被加速后在管内的气/液两相流的发展以及流出管外后喷雾流的形成,喷雾流自下而上产生;第二部分,气/液界面上的流体力学不稳定性,即Rayleigh Taylor(RT)不稳定性及Richt myer Meshkov(RM)不稳定性,液柱自上而下运动。实验发现,用此方法产生的喷雾具有流量大、射程远、覆盖面积大等特点。液柱在管内的加速过程中,上端面保持平面,下端面在经历了初始的不稳定性之后形成弹状流。在本实验的驱动压力及马赫数的范围内,RT和RM不稳定性的后期的发展过程比较接近,尽管两者的增长率不同。在RT不稳定性的初始阶段,高密度流体的尖钉先伸入低密度流体中;但是,在RM不稳定性的初始阶段,低密度的气泡先伸入高密度流体中。 This paper presents some new experimental results of using shock tubes to drive water spray with large flow rate. Highspeed photographywas extensively used in the experiments. Water columns were vertically accelerated upwards from shock tubes under four different kinds of operation conditions. It is found that the increase in the driving pressure will increase not only the velocity of the spray but also the amount of the liquid. It is also confirmed through the present study that (1) the rupture method of the diaphragm (dynamic or quasistatic) is not important in the spray generation; (2) The acceleration of liquid column before flowing out of the tube has a significant effect on the spray generation. Inspired by the above research, the RayleighTaylor (RT) and RichtmyerMeshkov (RM) instabilities at gas/liquid interfaces were also studied by accelerating liquid columns vertically downwards. It is found that in RT instability the coefficients of the mixing region αb= 0.0475 and αs/αb= 2.65, and in the RM instability, the width of the mixing region hi is time dependent with either a linear relationship hi ∝ t or a power law hi ∝ tθi, where θi >1. Surface tension σ and viscosity μ of the liquid affect the formation of the bubbles and spikes.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2003年第5期391-397,共7页 Explosion and Shock Waves
基金 教育部留学回国人员科研启动基金项目
关键词 瞬态加速 液柱 流体力学 界面不稳定性 高速摄影 激波管 瞬态喷雾流 气动力学 fluid mechanics interface instability high-speed photography shock tube transient spray
  • 相关文献

参考文献14

  • 1施红辉,王晓亮.用激波管驱动水喷雾[J].流体力学实验与测量,2002,16(4):13-17. 被引量:2
  • 2Joseph D D, Belanger J, Beavers G S. Breakup of a liquid drop suddenly exposed to a high-speed airstream [J]. Int J Multiphase Flow, 1999,25 : 1263--1303.
  • 3WANG Xiao-liang, SHI Hong-hui, Itoh M, et al. Flow visualization of high-speed pulsed liquid jet [A]. Proc SPIE [C]. 2000, 899--906.
  • 4SHI Hong-hui, WANG Xiao-liang, Itoh M, et al. Acceleration of water column and generation of large flow rate water spray by shock tube [J]. JSME Int J Ser B, 2001,44(4) ,543--551.
  • 5WANG Xiao-liang , Itoh M, SHI Hong-hui, et al. Experimental study of Rayleigh-Taylor instability in a shock tube[J]. Jpn J Appl Phys, 2001,40(11):6668--6674.
  • 6SHI Hong-hui, WANG Xiao-liang. Hydrodynamic shock tube for quick transportation of spray with large flow rate[J]. Experiments in Fluids, 2002,32(2), 280-- 282.
  • 7Richtmyer R D. Taylor instability in shock acceleration of compressible fluids [J]. Commun Pure Appl Math,1960,13:297--319.
  • 8Meshkov E E. Instability of the interface of two gases accelerated by a shock wave [J]. Fluid Dynamics, 1969,4:101--104.
  • 9Prestridge K, Rightley R M, Vorobieff P, et al. Simultaneously density-field visualization and PIV of a shock-accelerated gas curtain [J]. Experiments in Fluids, 2000,29:339--346.
  • 10Praaad J K, Rasheed A, Kurmar S, et al. The late-time development of the Richtmyer-Meshkov instability[J].Phys of Fluids, 2000,12(8):2108--2115.

二级参考文献10

  • 1[1]POLIZER J L, KING W F III. Hydrodynamics of explosively generated high-velocity fluid jets. J. Appl. Phys., 1971, 42:2095-2099.
  • 2[2]AVDIENKO A A. Experimental estimation of different parameters effects on the fragmentation of viscoelastic liquid column ejected from circular channel by compressed gas. Inzhenerno-Fizicheskii Zhurnal, 1994, 66(1):24-29.
  • 3[3]BELLHOUSE B J, QUINLAN N J, AINSWORTH R W. Needle-less delivery of drugs, in dry powder form, using shock waves and supersonic gas flow, In: Proc 21st Int Symp Shock Waves, Paper 9555, 1997.
  • 4[4]SHI H H, WANG X L, ITOH M, KISHIMOTO M. Acceleration of water column and generation of large flow rate water spray by shock tube. JSME Int. J. Ser. B, 2001, 44(4): 543-551.
  • 5[5]WANG X L, SHI H H, ITOH M, KISHIMOTO M. Flow visualization of high speed liquid jet. In: Proc 24th Int. Congress High-Speed Photograph Photonics & Exhibitions, SPIE Vol. 4183, 2001, pp.899-906.
  • 6[6]WANG X L, ITOH M, SHI H H, KISHIMOTO M. Experimental study of Rayleigh-Taylor instability in a shock tube accompanying cavity formation. Jpn. J. Appl. Phys., 2001, 40(11):6668-6674.
  • 7[7]SHI H H, WANG X L. Hydrodynamic shock tube for quick transportation of spray with large flow rate. Exp. Fluids, 2002, 32(2):280-282.
  • 8[8]DUNNE B, CASSEN B. Velocity discontinuity instability of a liquid jet. J. Appl. Phys., 1956, 27:577-582.
  • 9[9]LEFEBVRE A H. Atomization and Sprays. Hemisphere publishing corporation, New York, 1989.
  • 10[10]SHI H H, YU M Z, CAI Y N. Investigation on the shock-wave velocity and impact pressure in high-speed impact on deformable media. In: Multiphase Transport and Particulate Phenomena, edited by T. N. Veziroglu, Hemisphere, New York, 1990, pp.567-580.

共引文献1

同被引文献99

引证文献15

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部