摘要
我国沿海地区是风灾影响的重灾区,每年登陆的高强度热带气旋均会造成配电线路大面积倒杆、断杆、断线及其他设备受损,给社会与经济发展带来严重影响.本文通过利用2006-2014年湛江地区配电线路的风灾受损数据,提出一种新颖的特征提取方法并融合神经网络、遗传程序设计和多表达式程序设计算法建立一个混合预测模型来预测风灾下的配电线路受损情况.结果表明本文提出的方法是可行、有效的,为灾后快速抢修复电提供决策支持.
The coastal area of China is a heavy disaster area affected by wind disaster. High intensity of tropical cyclones(TC)landing every year generally causes severe damage for distribution lines, including pole inverted, pole broken and line disconnected and so on. It also causes serious influence on the development of the social and the national economy. According to Zhanjiang distribution lines’damaged data in recent years, a novel feature extraction method is proposed. Then, a hybrid prediction algorithm based on neural network, genetic programming and multi-expression programming is presented to predict the loss of distribution lines in TC disaster. It is indicated that the methodology will provide decision support for the rapid repair after disaster.
出处
《汕头大学学报(自然科学版)》
2016年第2期72-80,共9页
Journal of Shantou University:Natural Science Edition
基金
中国南方电网有限责任公司科技项目(K-GD2014-080)
国家自然科学基金(61502291)
广东省高等学校优秀青年教师培养计划项目(YQ2015070)
广东省普通高校特色创新项目(自然科学类)(2015KTSCX039)
广东省教育科学研究教育科研项目(2015GXJK037)
关键词
热带气旋
配电线路
特征提取
混合预测模型
tropical cyclone
distribution line
feature extraction
hybrid prediction algorithm