摘要
A three-dimensional global chemistry transport model (OSLO CTM2) is used to investigate the impact of subsonic aircraft NOZ emission on NOX and ozone over China in terms of a year 2000 scenario of subsonic aircraft NOX emission. The results show that subsonic aircraft NO* emission significantly affects northern China, which makes NOX at 250 hPa increase by about 50 pptv with the highest percentage of 60% in January, and leading to an ozone increase of 8 ppbv with 5% relative change in April. The NOX increase is mainly attributed to the transport process, but ozone increase is produced by the chemical process. The NOX increases by less than 10 pptv by virtue of subsonic aircraft NOX emission over China, and ozone changes less than 0.4 ppbv. When subsonic aircraft NOX emission over China is doubled, its influence is still relatively small.
A three-dimensional global chemistry transport model (OSLO CTM2) is used to investigate the impact of subsonic aircraft NOZ emission on NOX and ozone over China in terms of a year 2000 scenario of subsonic aircraft NOX emission. The results show that subsonic aircraft NO* emission significantly affects northern China, which makes NOX at 250 hPa increase by about 50 pptv with the highest percentage of 60% in January, and leading to an ozone increase of 8 ppbv with 5% relative change in April. The NOX increase is mainly attributed to the transport process, but ozone increase is produced by the chemical process. The NOX increases by less than 10 pptv by virtue of subsonic aircraft NOX emission over China, and ozone changes less than 0.4 ppbv. When subsonic aircraft NOX emission over China is doubled, its influence is still relatively small.