期刊文献+

一个带有离散和分布时滞的Holling-Ⅳ型捕食被捕食模型的稳定性和分支

Stability and Hopf Bifurcation of a Holling Type Ⅳ Predator-Prey System with Diecrete and Distribute Delays
原文传递
导出
摘要 本文研究了一个带有离散和分布时滞的Holling-IV型功能反应的捕食与被捕食模型,将离散时滞r看作分支参数,讨论了正平衡点的局部稳定性和Hopf分支,利用Routh-Hurwitz定理得到了平衡点局部渐近稳定的充分条件.通过分析相应的特征方程,发现随着r穿越某临界值,Hopf分支会发生,并且可能出现小范围周期解. A Holling type IV predator-prey model with diecrete and distribute delays is investigated,where the discrete delay π is regarded as a parameter.Its dynamics are studied in terms of local stability analysis and Hopf bifurcation analysis.Using the Routh-Hurwitz criterion,the sufficient conditions of locally asymptotic stability of the positive equilibrium point is derived.By analyzing the associated characteristic equation,it is found that Hopf bifurcation occurs when t crosses some critical value.Then,small amplitude periodic solutions arise.
机构地区 中北大学数学系
出处 《生物数学学报》 2014年第4期621-626,共6页 Journal of Biomathematics
基金 国家自然科学基金(10901145) 山西省自然科学基金(2009011005-1)
关键词 离散和分布时滞 Holling-Ⅳ功能性反应 捕食被捕食 HOPF分支 稳定性 Discrete and distributed delays Holling type Ⅳ functional response Predatorprey Hopf bifurcation Stability
  • 相关文献

参考文献1

二级参考文献10

  • 1刘会民,刘兵,刘双.具有HollingⅣ类功能反应的三维顺环捕食者—食饵模型[J].生物数学学报,2004,19(4):445-452. 被引量:13
  • 2丁孝全,程述汉.具反馈控制的时滞阶段结构种群模型的稳定性[J].生物数学学报,2006,21(2):225-232. 被引量:16
  • 3王育全,刘来福.具有Monod-Haldane功能反应的一类食物链模型的动力学行为[J].数学物理学报(A辑),2007,27(1):79-89. 被引量:7
  • 4Cui J A, Song X Y. Permanence of a predator-prey system with stage structure[J]. Discrete and Continuous Dynamics systems (Series B), 2004, 4(3):547-554.
  • 5Cui J A, Takeuchib Y. A predator-prey system with a stage structure for the prey[J]. Mathematics and Computer Modlling, 2006, 44:1126-1132.
  • 6Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics[M]. Dordrecht/Norwell: Kluwer Academic, 1992, 1-20.
  • 7Shea C X. Permanance and global attractivity of the foot-chain system with Holling IV type functional response[J]. Applied Mathematics and Computation, 2007, 194:179-185.
  • 8Wang Y Q. Global Stability and Hopf Bifurcation on a Predator-Prey System with Delays and Stage Structure[M]. Advances in Biomathematics, Liverpool (England , UK), World Academic Press, 2008: 825-829.
  • 9Yang W S, Li X P, Bai Z J. Permanence of periodic Holling-IV predator-prey system with stage structure for prey[J]. Mathematics and Computer Modlling, 2008, 48:677-684.
  • 10Zhu H G, Wang K, Li X J. Existence and global stability of positive periodic solutions for predator-prey system with infinite delay and diffusion[J]. Nonlinear Analysis, 2007, 8:872-886.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部