期刊文献+

具有负扰动项二阶中立型非线性动力方程的振动性与渐近性质

Oscillatory and Asymptotic Behavior for Second-Order Nonlinear Neutral Dynamic Equations With Negative Disturbed Term
原文传递
导出
摘要 本文讨论时标上具有负扰动项的二阶中立型非线性动力方程的振动性与渐近性质,获得了适用于所有时标的动力方程解的振动性和渐近性的充分条件,阐述了方程中各项的系数在方程解的定性性质中的作用,推广和改进了已有文献的有关结果,并给出了应用实例. In this paper,we discuss the oscillatory and asymptotic behavior for second-order nonlinear neutral dynamic equations with negative disturbed terms on time scales.We establish some new oscillation criteria which are the sufficient condition for dynamic equations on all time scales to have oscillatory and asymptotic solutions.Effects of coefficient of all the terms in the equation are stated.Some relevant results in the existing papers are improved and generalized in this paper.Finally,several examples are given to illustrate the applications of the obtained results.
作者 韩忠月
出处 《生物数学学报》 2014年第4期668-676,共9页 Journal of Biomathematics
关键词 二阶中立型非线性动力方程 振动定理 渐近性质 时标 Second-order nonlinear Neutral dynamic equation Oscillation theorem Asymptotic behavior Time scale
  • 相关文献

参考文献5

二级参考文献23

  • 1Hilger S. Analysis on measure chains- An unified approach to continuous and discrete calculus. Result. Math., 1990, 18: 18-56.
  • 2Bohner M, Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications. Boston: Birkhauser, 2001.
  • 3Bohner M, Peterson A. Advances in Dynamic Equations on Time Scales. Boston: Birkhauser, 2003.
  • 4Agarwal R P, Bohner M, O'Regan D, Peterson A. Dynamic equations on time scales: A survey. J. Comput. Appl. Math., 2002, 141:1 26.
  • 5Dosly O, Hilger S. A necessary and sufficient condition for oscillation of the Sturm Liouville dynamic equation on time scales. J. Comput. Appl. Math., 2002, 141: 147-158.
  • 6Ou L M. Atkinson's super-linear oscillation theorem for matrix dynamic equations on a time scale. J. Math. Anal. Appl., 2004, 299:615- 629.
  • 7Medico A D, Kong Q. Kamenev-type and interval oscillation criteria for second-order linear differ- ential equations on a measure chain. J. Math. Anal. Appl., 2004, 294: 621-643.
  • 8Bohner M, Saker S H. Oscillation criteria for perturbed nonlinear dynamic equations. Math. Comput. Model., 2004, 40: 249-260.
  • 9~ahiner Y. Oscillation of second-order delay differential equations on time scales. Nonlinear Anal., 2005, 63: 1073-1080.
  • 10Erbe L, Peterson A, Saker S H. Hille and Nehari type criteria for third-order dynamic equations. J. Math. Anal. Appl., 2007, 329: 112-131.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部