摘要
本文讨论了一类具有Growley-Martin功能反应和CTL免疫反应的病毒动力学模型的全局稳定性.利用Lyapunov函数和LaSalle不变原理证明:当基本再生数R_0≤1时,无病平衡点全局渐近稳定;当基本再生数R_0>1且免疫基本再生数R_0≤1时,免疫平衡点全局渐近稳定;当R_0>1时,地方病平衡点全局渐近稳定.
In this paper,the global stability of a virus dynamics model with Crowley-Martin functional response of the infection rate and CTL immune response is investigated.By constructing suitable Lyapunov functions and using LaSalles invariance principle,the global dynamics are established,it is showed that if the basic reproductive number R_0 is less than or equal to one,the disease-free equilibrium is globally asymptotically stable;if R^0 is more than one,and if immune response reproductive number,R^0,is less than one,the immune-free equilibrium is globally asymptotically stable;and if R^0 is more than one,the endemic equilibrium is globally asymptotically stable.
出处
《生物数学学报》
2015年第1期1-8,共8页
Journal of Biomathematics