期刊文献+

具有Crowley-Martin功能反应和CTL免疫反应的病毒动力学模型的全局稳定性(英文)

Global Stability for A Virus Dynamics Model with Crowley-Martin Functional Response and CTL Immune Response
原文传递
导出
摘要 本文讨论了一类具有Growley-Martin功能反应和CTL免疫反应的病毒动力学模型的全局稳定性.利用Lyapunov函数和LaSalle不变原理证明:当基本再生数R_0≤1时,无病平衡点全局渐近稳定;当基本再生数R_0>1且免疫基本再生数R_0≤1时,免疫平衡点全局渐近稳定;当R_0>1时,地方病平衡点全局渐近稳定. In this paper,the global stability of a virus dynamics model with Crowley-Martin functional response of the infection rate and CTL immune response is investigated.By constructing suitable Lyapunov functions and using LaSalles invariance principle,the global dynamics are established,it is showed that if the basic reproductive number R_0 is less than or equal to one,the disease-free equilibrium is globally asymptotically stable;if R^0 is more than one,and if immune response reproductive number,R^0,is less than one,the immune-free equilibrium is globally asymptotically stable;and if R^0 is more than one,the endemic equilibrium is globally asymptotically stable.
作者 李晓娟
出处 《生物数学学报》 2015年第1期1-8,共8页 Journal of Biomathematics
关键词 病毒动力学模型 Growley-Martin功能反应 LYAPUNOV函数 全局稳定 CTL免疫反应 Virus dynamics model Crowley-Martin functional response Lyapunov function Global stability CTL immune response
  • 相关文献

参考文献15

  • 1高海燕,伏升茂.强耦合竞争-竞争-互惠模型古典解的整体存在性[J].生物数学学报,2007,22(4):645-651. 被引量:5
  • 2Gang Huang,Wanbiao Ma,Yasuhiro Takeuchi.Global properties for virus dynamics model with Beddington–DeAngelis functional response[J]. Applied Mathematics Letters . 2009 (11)
  • 3Xueyong Zhou,Xiangyun Shi,Zhonghua Zhang,Xinyu Song.Dynamical behavior of a virus dynamics model with CTL immune response[J]. Applied Mathematics and Computation . 2009 (2)
  • 4Dan Li,Wanbiao Ma.Asymptotic properties of a HIV-1 infection model with time delay[J]. Journal of Mathematical Analysis and Applications . 2007 (1)
  • 5Kaifa Wang.Global stability in a viral infection model with lytic and nonlytic immune responses[J]. Computers and Mathematics with Applications . 2006 (9)
  • 6Andrei Korobeinikov.Global properties of basic virus dynamics models[J]. Bulletin of Mathematical Biology . 2004 (4)
  • 7Rebecca V. Culshaw,Shigui Ruan,Raymond J. Spiteri.Optimal HIV treatment by maximising immune response[J]. Journal of Mathematical Biology . 2004 (5)
  • 8Arnaout Ramy A,Martin A. Nowak,Wodarz Dominik.HIV–1 dynamics revisited: biphasic decay by cytotoxic T lymphocyte killing?[J]. Proceedings of the Royal Society B: Biological Sciences . 2000 (1450)
  • 9Wei-min Liu.Nonlinear Oscillations in Models of Immune Responses to Persistent Viruses[J]. Theoretical Population Biology . 1997 (3)
  • 10P. H. Crowley,E. K. Martin.Functional responses and interference within and between year classes of a dragonfly population. J North American Benthological Soc . 1989

二级参考文献13

  • 1Rai B, Freedman H I, Addicott J F . Analysis of three species model of mutualist in predator-prey and competitive systems[J]. Math Boisci, 1983, 65(1):13-50.
  • 2Zheng S. A reaction-diffusion system of a competitor-competitor-mutualist model[J]. J Math Anal Appl, 1987, 124(1):254-280.
  • 3Chen W, Peng R. Stationary patterns created by cross-diffusion for the competitor- competitor- mutualist model[J]. J Math Anal Appl, 2004, 291(2):550-564.
  • 4Choi Y S, Lui R, Yamada Y. Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion [J]. Discrete Contin Dynam Systems, 2004, 10(3):719-730.
  • 5Seong-A Shim. Uniform boundedness and convergence of solusions to cross-diffusion[J]. J Diff Eqs, 2002, 185(1):281-305.
  • 6Pao C V. Nonlinear Parabolic and Elliptic Equations[M]. New York: Plenum Press, 1992.
  • 7Amann H. Dynamic theory of quasilinear parabolic equations-Ⅰ. Abstract evolution equations [J]. Nonlinear Analysis, 1988, 12(9): 859-919.
  • 8Amann H. Dynamic theory of quasilinear parabolic equations-Ⅱ. Reaction-diffusion [J]. Diff Int Eqs, 1990, 3(1):13-75.
  • 9Amann H. Dynamic theory of quasilinear parabolic equations-Ⅲ. Global existence [J]. Math Z, 1989, 202(2):219-250.
  • 10Ladyzenskaja O A, Solonnikov V A, Uralceva N N. Linear and Quasilinear Equations of Parabolic Type[M]. Translations of Mathematical Monographs, AMS, 1968, 23.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部