摘要
本文利用Schauder不动点定理和Leray-Schauder非线性抉择原理,研究一类三阶微分方程反周期边值问题,给出了解的存在性的一些充分条件,并通过一些例子来说明本文结果的应用.
In this paper,by means of Schauder's fixed point theorem and LeraySchauder nonlinear alternative,we discuss the anti-periodic boundary value problem for a third-order differential equation.Some sufficient conditions for the existence of solutions are obtained.Some examples are presented to illustrate the application of our results.
出处
《生物数学学报》
2015年第1期9-16,共8页
Journal of Biomathematics
基金
Supported by NNSF(11371027)of China
the Foundational of Educational Commission of Anhui Province(KJ2009A005Z)of China
Anhui Provincial Natural Science Foundation(1208085MA13)