期刊文献+

一类具有吸收效应和胞内时滞的HBV感染模型的全局稳定性(英文) 被引量:1

Global Stability of a Hepatitis B Virus Infection Model with Absorption and Intracellular Delay
原文传递
导出
摘要 研究一类具有吸收效应和胞内时滞的HBV感染动力学模型.通过构造适当的Lyapunov泛函证明了当基本再生数小于1时,未感染平衡点是全局渐近稳定的;当基本再生数大于1时,给出了病毒感染平衡点全局渐近稳定的充分条件. In this paper,a hepatitis B virus infection model with absorption and an intracellular delay is investigated.By using suitable Lyapunov functionals and LaSalle's invariance principle,it is proved that if the basic reproductive ratio is less than unity,the infection-free equilibrium is globally asymptotically stable;if the basic reproductive ratio is greater than unity,sufficient conditions are obtained for the global stability of the virus-infected equilibrium.
出处 《生物数学学报》 2015年第1期47-53,共7页 Journal of Biomathematics
基金 supported by the National Natural Science Foundation of China(Nos.11371368,11071254) the Natural Science Foundation of Hebei Province of China(No.A2014506015) the Natural Science Foundation for Young Scientists of Hebei Province,China(No.A2013506012)
关键词 HBV感染 胞内时滞 吸收效应 全局稳定性 Hepatitis B virus infection Intracellular delay Absorption Global stability
  • 相关文献

参考文献8

  • 1曹艳红,朱惠延.具免疫应答和细胞内部时滞的HIV-1感染模型的稳定性分析[J].生物数学学报,2010,25(4):664-674. 被引量:8
  • 2王霞,陶有德,宋新宇.一类带有肝炎B病毒感染的数学模型的全局稳定性分析(英文)[J].生物数学学报,2009,24(1):1-8. 被引量:14
  • 3Redouane Qesmi,Jun Wu,Jianhong Wu,Jane M. Heffernan.Influence of backward bifurcation in a model of hepatitis B and C viruses[J]. Mathematical Biosciences . 2010 (2)
  • 4Stephen A. Gourley,Yang Kuang,John D. Nagy.Dynamics of a delay differential equation model of hepatitis B virus infection[J]. Journal of Biological Dynamics . 2008 (2)
  • 5Martin A. Nowak,Charles R. M. Bangh.Population Dynamics of Immune Responses to Persistent Viruses. Science . 1996
  • 6R. M. Anderson,R. M. May,S. Gupta.Non-linear phenomena in host—parasite interactions. Parasitology . 1989
  • 7Hale JK,Verduyn Lunel SM.Introduction to Functional Differential Equations. Journal of Applied Mathematics . 1993
  • 8Herz A V,Bonhoeffer S,Anderson R M,May R M,Nowak M A.Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay. Proceedings of the National Academy of Sciences of the United States of America . 1996

二级参考文献18

  • 1闫萍,吴昭英.具潜伏期的无免疫型传染病动力学的微分模型[J].生物数学学报,2006,21(1):47-56. 被引量:22
  • 2夏米西努尔.阿布都热合曼,滕志东.一类非自治SIRS传染病模型的持久性与灭绝性研究(英文)[J].生物数学学报,2006,21(2):167-176. 被引量:6
  • 3马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社,2007.
  • 4Perelson A, Nelson P. Mathematical analysis of HIV-1 dynamics in vivo[J]. Society for Industrial and Applied Mathematics Review, 1999, 41(1):3-44.
  • 5Culshaw R, Ruan S, Spiteri R. Optimal HIV treatment by maximizing imnmne response[J]. Journal of Mathematical Biology, 2004, 48(5):545-562.
  • 6Zhu H, Zou X. Dynamics of a HIV-1 Infection model with cell-mediatecl immune response and intracellular delay[J]. Discrete and Continuous Dynamical Systems-B, 2009, 12(1):513-526.
  • 7Martin Nowak A, Nomak, Robert M. May, Virus Dynamics[M]. New York: Oxford University Press, 2000.
  • 8Gyori I, Ladas G. Oscillation Theory of Delay Differential Equations with Applications[M]. Oxford: Clarendon Press, 1991.
  • 9Busenberg S, Cooke K L. Vertically Transmitted Diseases, Model and Dynamics(Biomathematics.23)[M]. New York: Springer, 1993.
  • 10Beretta E, Kuang Y. Geometric stability switch criteria in delay differential systems with delay dependent parameters[J]. SIAM J. Math. Anal, 2002, 33 (5):1144-1165.

共引文献24

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部