期刊文献+

解析一类SIS和SIR传染病模型的稳定性 被引量:5

Analysis of a Class of SIS and Stability of an SIR Epidemic Model
原文传递
导出
摘要 借助微分方程建立传染病SIS模型和SIR模型,进一步研究了一类SIS和SIR传染病模型,得出了决定SIS传染病是否发生的阈值;解析了SIR模型无病平衡点和地方平衡点的稳定性. With the establishment of the differential equations of infectious SIS model and SIR model,further studies on a class of SIS and SIR infectious disease model,the decision of SIS infectious disease occurs whether the threshold;analytical model of SIR disease-free equilibrium and the endemic equilibrium stability.
作者 周俊林
出处 《生物数学学报》 2015年第1期75-78,共4页 Journal of Biomathematics
关键词 传染病 阈值 平衡点 稳定性 Infectious disease Threshold Equilibrium Stability
  • 相关文献

参考文献8

二级参考文献26

  • 1陈军杰.若干具有非线性传染力的传染病模型的稳定性分析[J].生物数学学报,2005,20(3):286-296. 被引量:26
  • 2杨光,张庆灵.对Logistic增长的SIS模型实现反馈线性化和极点配置的一步设计[J].生物数学学报,2006,21(2):261-269. 被引量:4
  • 3Carlos M.Heruadez-Suarez. A Markov Chain Approach to Calculate RO in Stochastic Epidemic Models [J]. Journal of Theoretical Biology, 2002, 215(11):83-93.
  • 4Matt J.KeelingEELING , Bryan T.Grenfell.Individual-based Perspectives on[J]. Journal of Theatrical Biology, 2000, 203(1): 51-61.
  • 5Alun L,Llodyd, Rober M,MAY.Spatial Heterogeneity in Epidemic Models[J]. Journal of Theoretical Biology, 1996, 179(1): 1-11.
  • 6James M.Hyman,Jia Li .An intuitive formulation for the reproductive number for the spread of diseases in Heterogeneous populations[J].Mathematical Biosciences, 2000, 167(1): 65-86.
  • 7Zho S,Xu Z, Lu Y A .Mathematical model of hepatitis B virus transmitsion and its application for vaccineation strategy in china[J].Int.J.Epidemiol, 2000, 29(11): 744-752.
  • 8刘士敬.朱倩.乙型肝炎解惑答疑[M].北京·中国医药科技出版社,2003:1-179.
  • 9Beretta E, Takeuchi Y. Global stability of an SIR epidemic model with time delays[J]. J Math Biol, 1995,33 : 250- 260.
  • 10Beretta E, Takeuchi Y. Convergence results in SIR epidemic model with varying population sizes[J]. Nonl Anal, 1997,28:1909-1921.

共引文献17

同被引文献29

引证文献5

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部