期刊文献+

一类具有多种传播途径的SIRW传染病模型的全局稳定分析

Global Analysis of the Waterborne Diseases Model with Multiple Transmission Ways
原文传递
导出
摘要 本文针对一类具有多种传播途径的SIRW传染病动力学模型进行全局稳定分析.通过两种方法来进行证明,方法一利用二次复合矩阵和极限系统理论相结合的方法;方法二利用Volterra-Lyapunov稳定矩阵与Lyapunov方程相结合的方法.两种方法均能证明当R_0>1时,地方病平衡点是全局稳定的. In this paper,we use two approaches to prove the global stability for the endemic equilibrium of the waterborne diseases model with multiple transmission ways.First we use the second additive compound matrix and the limiting system theory;Next we incorporate the Volterra-Lyapunov stable matrices theory into the classical Lyapunov functions.Both of the two methods can prove that the unique positive endemic equilibrium of system(1-4) is globally asymptotically stable when R_0 > 1.
作者 廖书 杨炜明
出处 《生物数学学报》 2015年第1期93-98,共6页 Journal of Biomathematics
基金 国家自然科学基金(NO.11271388 11401059) 国家社会科学基金(NO.13CTJ016)
关键词 全局稳定性 极限系统理论 二次复合矩阵 Volterra-Lyapunov稳定矩阵 Global stability The limiting system theory Second additive compound matrix Volterra-Lyapunov stable matrices
  • 相关文献

参考文献14

  • 1廖书,杨炜明,陈相臻.霍乱动力学模型中的疫情增长率以及疫情最终大小的计算[J].生物数学学报,2014,29(1):143-149. 被引量:1
  • 2付景超,井元伟,张中华,张嗣瀛.具垂直传染和连续预防接种的SIRS传染病模型的研究[J].生物数学学报,2008,23(2):273-278. 被引量:33
  • 3Joseph H. Tien,David J. D. Earn.Multiple Transmission Pathways and Disease Dynamics in a Waterborne Pathogen Model[J]. Bulletin of Mathematical Biology . 2010 (6)
  • 4Michael Y. Li,John R. Graef,Liancheng Wang,János Karsai.Global dynamics of a SEIR model with varying total population size[J]. Mathematical Biosciences . 1999 (2)
  • 5Michael Y. Li,James S. Muldowney.Global stability for the SEIR model in epidemiology[J]. Mathematical Biosciences . 1995 (2)
  • 6Zindoga Mukandavire,Shu Liao,Jin Wang,Holly Gaff,David L. Smith,J. Glenn Morris, Jr.From the Cover: Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe. Proceedings of the National Academy of Sciences of the United States of America . 2011
  • 7Code?o Cláudia.Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infectious Diseases . 2001
  • 8Capasso V,Paveri-Fontana S L.A mathematical model for the 1973 cholera epidemic in the European Mediterranean region. Revue d’épidémiologie et de santé publique . 1979
  • 9Ray Redheffer.Volterra multipliers. I, II. SIAM J. Algebraic Discrete Methods . 1985
  • 10Khalil HK.Nonlinear systems. Journal of Women s Health . 1996

二级参考文献15

  • 1陈军杰.若干具有非线性传染力的传染病模型的稳定性分析[J].生物数学学报,2005,20(3):286-296. 被引量:26
  • 2杨建雅,张凤琴.一类具有垂直传染的SIR传染病模型[J].生物数学学报,2006,21(3):341-344. 被引量:22
  • 3[1]Wang W,Ruan S.Bifurcations in an epidemic model with constant removal rate of the infectives[J].Journal of Mathematical Analysis and Applications,2004,291(2):775-793.
  • 4[2]Alexander M E,Moghadas S M.Periodicity in an epidemic model with a generalized non-linear incidence[J].Mathematical Biosciences,2004,189(1):75-96.
  • 5[3]Alberto d'Onofrio.On pulse vaccination strategy in the SIR epidemic model with vertical transmission[J].Applied Mathematics Letters,2005,18(7):729-732.
  • 6[9]李健全.具有预防接种流行病的模型[D].(西安交通大学博士论文),2003.
  • 7Joseph H. Tien,David J. D. Earn.Multiple Transmission Pathways and Disease Dynamics in?a?Waterborne Pathogen Model[J].Bulletin of Mathematical Biology.2010(6)
  • 8Tom Britton,David Lindenstrand.Epidemic modelling: Aspects where stochasticity matters[J].Mathematical Biosciences.2009(2)
  • 9Nicolas Baca?r,M. Gabriela M. Gomes.On the Final Size of Epidemics with Seasonality[J].Bulletin of Mathematical Biology.2009(8)
  • 10Wallinga J,Lipsitch M.How generation intervals shape the relationship between growth rates and reproductive numbers[J].Proceedings of The Royal Society B.2006(1609)

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部