摘要
本文研究了一类带时滞、周期脉冲输入营养液的恒化器模型.我们得到了存在一个全局吸引的微生物灭绝周期解;同时给出了带时滞和脉冲输入系统持续生存的充分条件.我们表明了脉冲效应破坏了连续系统的平衡点产生了周期解,本文结论可用于微生物的培养.
In this paper,the dynamics of a delay chemostat model with pulsed input and the Beddington-DeAngelis functional response is considered.We have shown that there exists a microorganism-free periodic solution,which is globally attractive.We give the sufficient condition for the permanence of the model with time delay and pulsed input.Our results can be applied to culture the microorganisms.
出处
《生物数学学报》
2015年第3期425-435,共11页
Journal of Biomathematics
基金
Supported by the National Natural Science Foundation of China(No.11371164)
NSFC-Talent Training Fund of Henan(U1304104)
Innovative Talents of Science and Technology Plan in Henan province(15HASTIT014)
the Young Backbone Teachers of Henan(No.2013GGJS-214)
关键词
时滞
脉冲效应
全局吸引
持续
Time delay
Impulsive effect
Global attractivity
Permanence