摘要
本文,我们研究了一类同时考虑异性之间传播和同性之间传播以及具有常数输入的艾滋病传播模型.首先讨论了系统解的正性,平衡点的存在性等基本性质.利用比较原理证明了无病平衡点E_0的全局渐近稳定性.证明地方病平衡点的全局渐近稳定性时,我们用到了几何方法.最后使用MATLAB和取自南昌市东湖区数据进行了数值模拟,验证了结论的正确性并预测了该地区艾滋病人数的变化趋势.
In this paper,we investigate an HIV/AIDS epidemic model with both heterosexual and homosexual(Male-to-Male) transmission and with constant recruitment rate.First,we give some basic analysis of the model such as positivity of the solutions,existence of the equilibrium points.Then using the comparison theorem we prove the global asymptotic stability of the disease-free equilibrium E_0.To prove the global asymptotic stability of endemic equilibrium we use the geometrical approach.We give some numerical simulations using Matlab and data from the east lake area of Nangchang city,China,to verify our results and to predict the HIV/AIDS population tendency in this area.
出处
《生物数学学报》
2017年第1期1-11,共11页
Journal of Biomathematics
基金
Supported by the National Natural Science Foundation of China(Grant No.11261056,11271312)