期刊文献+

一类Filippov两阶段害虫治理模型的动力学研究

Dynamics Research of a Filippov two Stage Pest Control Model
原文传递
导出
摘要 本文将幼年害虫种群数量作为害虫控制的指标,建立了具有阈值策略的非光滑Filippov系统的害虫增长模型,将害虫数量控制在合理密度范围内,系统地分析了滑线系统、等倾线以及平衡点的存在性问题. In this paper, we take the number of juvenile pests density as a control indicator of pest number, then, the pest growth model of non-smooth Filippov system with economic threshold strategy is established. We control the number of pests within a reasonable range of density, and the existence of sliding line system, null-isoclines and equilibria axe systematically analyzed.
出处 《生物数学学报》 2018年第1期77-83,共7页 Journal of Biomathematics
关键词 Filippov系统 经济阈值 滑线区域 平衡点 Filippov System Economic Threshold Sliding region Equilibria
  • 相关文献

参考文献3

二级参考文献24

  • 1马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社,2007.
  • 2Tang S Y,Tang G Y,Cheke R A.Optimum timing for integrated pest management:Modelling rates of pesticide application and natural enemy releases[J].Journal of Theoretical Biology,2010,264(2):623-638.
  • 3Meza M E M,Bhaya A,Kaszkurewiez E.Threshold polices control for predator-pray systems using a control Liapunov function approach[J].Theoretical Population Biology,2005,67(4):273-284.
  • 4Bernardo M D,Budd C J,Champneys A R,et al.Piecewise-smooth Dynamical Systems Theory and Applications[M].London:Springer,2008.
  • 5Costa M I S,Meza M E M.Application of a threshold policy in the management of multispecies fisheries and predator culling[J].IMA Mathematical Medicine and Biology,2006,23(1):63-75.
  • 6Tang S Y,Chen L S.Density-dependent birth rate,birth pulses and their population dynamic consequences[J].Journal of Mathematical Biology,2002,44(2):85-199.
  • 7Filippov A F.Differential Equations with Discontinuous Righthand Sides[M].Dordrecht:Kluer Academic,1998.
  • 8Guardia M.Silding Modes in Control and Optimization[M].Berlin:Springer,1992.
  • 9Buzzi C A,Carvalho T D,Dasilva P R.Canard Cycles and Poincare Index of Non-Smooth Vector Filds on the Plane[M].Mathematics Subject Classification,2010.
  • 10Zhang Y J, Liu B, Chen L S. Extinction and permanence of a two-prey one-predator system with impulsive effect[J]. IMA:Mathematical Medicine and Biology, 2003, 20(4):309-325.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部