期刊文献+

具非线性传染力和饱和发生率的植物病虫害模型稳定性分析

Stability Analysis of Plants Pests Models with Nonlinear Infectious Force and Saturation Terms
原文传递
导出
摘要 研究了SEIR植物病虫害模型,对原有的SEIR模型做出了一些改进.原有的SEIR模型中的非线性项只考虑了易感植物与染病植物的相互作用而产生一个潜伏虫害植物,但实际上易感植物与潜伏期类植物也会有个相互作用从而使易感植物转化为潜伏期植物,对非线性项进行改进后得到一个新的SEIR模型,研究这个模型的稳定性.然后给改进的模型的非线性项再添加一个饱和感染率,主要考虑到由于染病个体的增多会引起人们的自我防患意识从而有一个对患病的抑制作用,因此需要再在非线性项上再加一个饱和项. The SEIR model is studied, and some improvements to the original SEIR model are made. Stability analysis of plant diseases and insect pests models with nonlinear infectious force and saturation terms. But in fact, susceptible plants and latent plants also interact with each other, thus transforming susceptible plants into latent plants. After improving the nonlinear term, a new SEIR model is obtained. Study the stability of the model. Then add a saturation term to the nonlinear term of the improved model. Because considering the increase of infected individuals will cause people’s awareness of self prevention and thus have an inhibitory effect on disease. Therefore, we need to add a saturation term to the nonlinear term.
作者 黄瑞君 王定江 HUANG;Rui-juu;WANG Ding-jiang(College of Science, Zhejiang University of Technology^ Hangzhou Zhejiang 310023 China)
出处 《生物数学学报》 2018年第2期211-221,共11页 Journal of Biomathematics
基金 国家自然科学基金项目(61273016)
关键词 非线性发生率 基本再生数 饱和发生率 渐近稳定 Nonlinear occurrence rate Basic reproduction number Saturation rate Asymptotically stable
  • 相关文献

参考文献4

二级参考文献27

  • 1徐文雄,张太雷.一类非线性SEIRS流行病传播数学模型[J].西北大学学报(自然科学版),2004,34(6):627-630. 被引量:13
  • 2徐文雄,张仲华,徐宗本.具有一般形式饱和接触率SEIS模型渐近分析[J].生物数学学报,2005,20(3):297-302. 被引量:23
  • 3[1]Kermark M D. Mokendrick A G. Contributions to the mathematical theory of epidemics[J]. Part I, Proc Roy Soc, A, 1927, 115(5):700-721.
  • 4[2]Cooke K L. Stability analysis for a vector disease model[J]. Rocky Mount J Math, 1979, 9(1):31-42.
  • 5[3]Hethcote H W. Qualititative analyses of communicable disease models[J]. Math Biosci, 1976, 28(3):335-356.
  • 6[4]Capasso V. Mathematical structures of epidemic systems[J]. Lecture notes in biomath[M]. 97 Springer-verlag,1993.
  • 7[5]Hethcote H W, Liu W M, Leven S A. Dynamical behavior of epidemiological models with nonlinear incidence rates[J]. Math Biosci, 1987, 25(3):359-380.
  • 8[6]Capasso V, Serio G. A generalization of the Kermack-Mckendrick deterministic epidemic model[J]. Math Biosci, 1978, 42(1):41-61.
  • 9[7]Bailey N T J. The Mathematical Theorey of Infectious Diseases.[M]. London: Griffin, 1975.
  • 10马知恩,周义仓,王稳地,靳祯.传染病动力学数学建模与研究[M].北京.科学出版社.2001.105-110.

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部