摘要
基于Fluent软件,利用标准的湍流模型,针对不等高的相邻建筑物建模,下游建筑物完全处于上游建筑物尾流区内,分析了上下游建筑物高度差对上游建筑物尾流区的影响:同一下游建筑高度下,越远离建筑物前沿,风速比越小;在上游建筑物尾流区内,随着下游建筑物高度的升高,风速比的峰值会相应升高。假定进口风速为5 m/s,结合1 000 W的小型风机,比较了下游建筑物不同高度下风机的输出功率,可知:当下游建筑物较低时,风机安装位置风速低于启动风速;随着下游建筑高度的升高,输出功率提升。
ABSTRACT:This paper is based on Flunet and the standard k-εturbulence model is used to calculate the wind field around adjacent buildings with different heights. The paper analyzes how the height difference affects the wake area of the upstream building. First,under the same downstream building height, the further from the front of the building,the smaller the wind speed ratio will be. Second,in the wake area of the upstream building,with the increase of the downstream building height, the peaks of the wind speed ratio will rise accordingly. The inlet wind speed is assumed as 5 m/s,the output power of the wind turbine under different downstream building heights are compared based on a small scale wind turbine EW1000. It can be seen that when the downstream building is low,the wind speed where the wind turbine installed is lower than the start-up wind speed;with the increase of altitude,the output power increases.
出处
《电网与清洁能源》
2014年第9期78-82,共5页
Power System and Clean Energy
基金
国家自然科学基金资助(61203129
61174038
61104064)~~
关键词
尾流区
建筑物高度差
风速比
输出功率
wake area
height difference of buildings
wind speed ratio
output power