期刊文献+

基于TMR传感器的车辆检测分类算法研究 被引量:1

Research on vehicle detection and classification algorithm by TMR sensor
下载PDF
导出
摘要 车辆检测与分类是智能交通运输系统研究的核心技术之一,具有广泛的应用前景。深入研究了隧穿磁阻(Tunneling Magneto Resistance,TMR)传感器的产生机理,结合双节点动态采样机制以及车辆波形窗口斜率拐点的加权欧氏距离算法,提出了一种基于TMR传感器的车辆检测技术。经道路车辆检测数据显示,与感应线圈检测法等相比,该检测方法功耗低、使用寿命长,且不易受外界环境影响,能实时、精确地检测车流量及速率,完成车辆类型的识别与分类。 Vehicle detection and classification is one of the key techniques in intelligent transportation system, and it has a broad application prospect. This paper studies the working mechanism of tunneling magneto resistance(TMR) sensor, and proposes a TMR sensor based vehicle detection technique by combining the double point dynamic sampling mechanism and the weighted Euclidean distance method for knee slopes of vehicle waveform. The experiments of road vehicle detection show that the feature of this detection method is low power consumption and long service life comparing with the induction coil detection; and it is not easily affected by external environment. Moreover, it can detect the vehicle flow and speed accurately and complete the identification and classification of vehicle types.
作者 吴兆明
出处 《声学技术》 CSCD 北大核心 2017年第6期596-601,共6页 Technical Acoustics
关键词 隧道磁阻传感器 车辆检测 智能交通 欧氏距离 Tunnel Magneto Resistance(TMR) sensor vehicle detection intelligent transportation system euclidean distance method
  • 相关文献

参考文献8

二级参考文献103

  • 1谢旭,朱越峰,申永刚.大跨度钢索和CFRP索斜拉桥车桥耦合振动研究[J].工程力学,2007,24(z1):53-61. 被引量:27
  • 2李凤保,李凌.无线传感器网络技术综述[J].仪器仪表学报,2005,26(z2):559-561. 被引量:69
  • 3HUANG Dong zhou. Dynamic and impact behavior of halfthrough arch bridges [J].Journal of Bridge Engineering, 2005, 10(2): 133-141.
  • 4LEE Sang Youl, YHIM Sung-Soon. Dynamic behavior of long-span box girder bridges subjected to moving loads.. Numerical analysis and experimental verification [J]. International of Solids and Structures, 2005, 42(18/ 19) : 5021 - 5035.
  • 5LESLAW Kwasniewski, I.I Hong-yi, WEKEZER J, et al. Finite element analysis of vehicle-bridge interaction [J]. Finite Elements in Analysis and Design, 2006, 42 (11) : 950- 959.
  • 6TORRENCE C, COMPO G P. A practical guide to wavelet analysis [J]. Bulletin of the American Meteorological Society, 1998, 79(1) : 61 - 78.
  • 7RUZZENE M, FASANA A, GARIALDI L, et al. Natural frequencies and damping identification using wavelet transform [J]. Mechanical Systems and Signal Processing, 1997, 11(2): 207-218.
  • 8都有为.第七届中国功能材料及其应用学术会议论文集:第一分册[C].重庆:《功能材料》期刊社,2010.
  • 9Freitas P P, Ferreira R, Cardoso S, et al. Magnetoresistive sensors [J]. J Phys: Condens Matter, 2007, 19:165221.
  • 10Egelhoff Jr W F, Pong P W T, Unguris J, et al. Critical challenges for picoTesla magnetic-tunnel-junction sensors [J]. J Sensors and Actualtors A, 2009:217-225.

共引文献240

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部