期刊文献+

抽象受控不等式的同构映射 被引量:1

The Isomorphic Mapping of the Abstract Majorization Inequalities
原文传递
导出
摘要 通过提出抽象平均、抽象凸函数、抽象控制和抽象受控不等式的同构映射概念,建立了抽象凸函数同构映射的基本定理:设(■)_F和(■)_S为抽象平均,α(x)为严格单调(■)_(F-)-函数,β(x)为严格单调递增(■)_(S-)-函数,那么f(x)为抽象(■)_F→(■)_S严格上凸函数的充分必要条件是:f*(x)=β^(-1)o f oα(x)为抽象(■)_F~α→(■)_S~β严格上凸函数,这里(■)_F~α=α^(-1)o(■)oα,(■)_S~β=β^(-1)o(■)_S oβ.在抽象平均同构映射的基础上,获得了抽象受控不等式同构映射的基本定理:记a_i=α^(-1)(x_i),b_i=α^(-1)(yi)(i=1,2,…,n),则不等式(■)_S{f(x_1),f(x_2),…,f(x_n)}>(■)_S{f(y_1),f(y_2),…,f(y_n)}成立的充分必要条件是:不等式(■)_S~β{f~*(a_1),f~*(a_2),…,f~*(a_n)}>(■)_S~β{f~*(b_1),f~*(b_2),…,f~*(b_n)}成立.作为基本定理的简单应用,证明了算术受控不等式、几何受控不等式和调和受控不等式这三类不等式是同构的.简而言之,这三类受控不等式是等价的. Using the axiomatic method,the isomorphic mapping of abstract mean,abstract convex function,abstract majorization and abstract majorization inequality are proposed,respectively.The fundamental theorems about the isomorphic mapping of abstract convex functions are established as follows:Suppose that(■)_F and(■)_S are abstract means,α(x) is a strict monotone(■)_F-function,β(x) is a strict monotone increasing(■)_S-function,then the f(x) is abstract strict(■)_F →(■)_S convex function if and only if f~*(x) = β^(-1) o f o α(x) is abstract strict()_F~α→(■)_S~β convex function,where(■)_F~α = α^(-1) o(■) o α,(■)_S~β = β^(-1) o(■)_S o β.The fundamental theorems about isomorphic mapping of abstract majorization inequalities are established as follows:let a_i = α^(-1)(x_i),b_i=α^(-1)(y_i)(i = 1,2,…,n),then the inequalities(■)_S{f(x_1),f(x_2),…,f(x_2),…,f(x_n)} >(■)_S{f(y_1),f(y_2),…,f(y_n)}hold if and only if the inequalities(■)_S~β{f~*(a_1),f~*(a_2),…,f~*(a_n)}>(■)_S~β{f~*(b_1),f~*(b_2),…,f~*(b_n)}.hold.As their applications,we prove that the arithmetic majorization inequalities,geometric majorization inequalities and harmonic majorization inequalities are isomorphic,i.e.,three classes of majorization inequalities are equivalent.
作者 杨定华
出处 《数学进展》 CSCD 北大核心 2014年第5期741-760,共20页 Advances in Mathematics(China)
基金 国家自然科学基金资助项目(No.10901116) 四川省教育厅自然科学基金资助项目(No.11ZB080) 四川师范大学重点人才计划资助项目
关键词 抽象平均 抽象凸函数 抽象受控 抽象受控不等式 同构映射 abstract mean abstract convex function abstract majorization abstract majorization inequality isomorphic mapping
  • 相关文献

参考文献8

二级参考文献80

  • 1杨路,侯晓荣,夏壁灿.A complete algorithm for automated discovering of a class of inequality-type theorems[J].Science in China(Series F),2001,44(1):33-49. 被引量:24
  • 2Lu YANG~(1,2) Yong FENG~(1+) Yong YAO~1 1 Laboratory for Automated Reasoning and Programming,Chengdu Institute of Computer Applications,Chinese Academy of Sciences,Chengdu 610041,China,2 Institute of Theoretical Computing,East China Normal University,Shanghai 200062,China.A class of mechanically decidable problems beyond Tarski's model[J].Science China Mathematics,2007,50(11):1611-1620. 被引量:3
  • 3张景中,杨路,高小山,周咸青.几何定理可读证明的自动生成[J].计算机学报,1995,18(5):380-393. 被引量:22
  • 4杨路.差分代换与不等式机器证明[J].广州大学学报(自然科学版),2006,5(2):1-7. 被引量:36
  • 5Yang L. Solving harder problems with lesser mathematics. In: Proceedings of the 10th Asian Technology Conference in Mathematics. Blacksburg: ATCM Inc, 2005, 37-46.
  • 6杨路.不等式机器证明的若干新进展.Report in Summer School on Symbolic Computation, Beijing, China, July 15-22, 2006.
  • 7Cohn H. Products of stochastic matrices and applications. Int J Math Math Sci, 1989, 12:209-233.
  • 8Leizarowitz A. On infinite products of stochastic matrices. Linear Algebra Appl, 1992, 168:189-219.
  • 9Armstrong M A. Basic Topology. New York-Berlin-Heidelberg: Springer-Verlag, 1983, 125-127.
  • 10Basu S, Pollack R, Roy M F. Algorithms in Real Algebraic Geometry, 2nd. New York-Berlin-Heidelberg: Springer- Verlag, 2006, 215-217.

共引文献53

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部