期刊文献+

偶特征正交空间上非奇异子空间的Critical问题 被引量:2

Critical Problems of Nonsingular Subspaces in Finite Orthogonal Spaces of Even Characteristic
原文传递
导出
摘要 利用偶特征有限正交空间的性质及计数定理在偶特征有限正交空间上研究了非奇异子空间的critical问题,得到了相应的计数公式和critical指数. With the properties and counting theorems in the orthogonal spaces over finite fields of even characteristic,we study the critical problems of nonsingular subspaces in the finite orthogonal spaces and obtain the corresponding counting formulas and critical exponents.
出处 《数学进展》 CSCD 北大核心 2014年第6期824-834,共11页 Advances in Mathematics(China)
基金 海南省自然科学基金(No.113009) 河北省高等学校自然科学研究项目(No.Z2010185)
关键词 偶特征有限正交空间 critical指数 MATROID MOBIUS函数 orthogonal spaces over finite fields of even characteristic critical exponent lattice matroid Mobius function
  • 相关文献

参考文献3

二级参考文献12

  • 1Crapo H H, Rota G C. On the Foundation of Combinatorial Theory: Combinatorial Geometries. Cambridge: M.I.T.Press, 1970.
  • 2Kung J P S. Pfaffian Structures and Critical Problems in Finite Symplectic Spaces. Annals of Combinatorics, 1997, 1:159-172.
  • 3Wan Z X. Critical Problems in Finite Vector Spaces. Codes and Designs, 2002, 10:293-303.
  • 4Wan Z X. Geometry of Classical Groups over Finite Fields (Second Edition) Beijing: Science Press, 2006.
  • 5Martin Aigner. Combinatorial Theory. Berlin, Heidelberg, New York: Springer-Verlag Press, 1979.
  • 6Welsh D J A. Matroid Theory. London and New York: Academic Press, 1976.
  • 7CRAPO H H,ROTA G C.On the Foundations of Combinatorial Theory:Combinatorial Geometries[M].Cambridge:MIT Press,1970.
  • 8KUNG J P S.Pfaffian structures and critical problem in finite symplectic spaces[J].Annals of Combinatorics,1997(1):159-172.
  • 9WAN Z X.Critical problem in finite vector spaces[J].Codes and Designs,2002(10):293-303.
  • 10WAN Z X.Geometry of Classical Groups over Finite Fields[M].2nd ed.Beijing:Science Press,2002.

共引文献5

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部