摘要
Let G be a finite group and p be a fixed prime. A p-Brauer character of G is said to be monomial if it is induced from a linear p-Brauer character of some subgroup(not necessarily proper) of G. Denote by IBr_m(G) the set of irreducible monomial p-Brauer′characters of G. Let H = G′O^p′(G) be the smallest normal subgroup such that G/H is an abelian p′-group. Suppose that g ∈ G is a p-regular element and the order of gH in the factor group G/H does not divide |IBr_m(G)|. Then there exists ? ∈ IBr_m(G) such that ?(g) = 0.
Let G be a finite group and p be a fixed prime. A p-Brauer character of G is said to be monomial if it is induced from a linear p-Brauer character of some subgroup(not necessarily proper) of G. Denote by IBr_m(G) the set of irreducible monomial p-Brauer′characters of G. Let H = G′O^p′(G) be the smallest normal subgroup such that G/H is an abelian p′-group. Suppose that g ∈ G is a p-regular element and the order of gH in the factor group G/H does not divide |IBr_m(G)|. Then there exists ? ∈ IBr_m(G) such that ?(g) = 0.
基金
supported by the National Natural Science Foundation of China(Nos.11571129,11771356)
the Natural Key Fund of Education Department of Henan Province(No.17A110004)
the Natural Funds of Henan Province(Nos.182102410049,162300410066)