期刊文献+

On the Cegrell Classes Associated to a Positive Closed Current

On the Cegrell Classes Associated to a Positive Closed Current
原文传递
导出
摘要 The aim of this paper is to study the operatoron■ on some classes of plurisubharmonic (psh) functions, which are not necessary bounded, where T is a positive closed current of bidimension (q, q) on an open set ? of C^n. The author introduces two classes F_p^T (?) and■ and shows first that they belong to the domain of definition of the operator■. Then the author proves that all functions that belong to these classes are C_T-quasi-continuous and that the comparison principle is valid for them. The aim of this paper is to study the operator■on some classes of plurisubharmonic(psh) functions, which are not necessary bounded, where T is a positive closed current of bidimension(q, q) on an open set ? of C^n. The author introduces two classes F_p^T (?) and■ and shows first that they belong to the domain of definition of the operator■. Then the author proves that all functions that belong to these classes are C_T-quasi-continuous and that the comparison principle is valid for them.
作者 Mohamed ZAWAY
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2019年第4期567-584,共18页 数学年刊(B辑英文版)
关键词 POSITIVE CLOSED CURRENT Plurisubharmonic function Capacity Monge-Ampère OPERATOR Positive closed current Plurisubharmonic function Capacity Monge-Ampère Operator
  • 相关文献

参考文献1

二级参考文献11

  • 1Bedford E, Taylor B A. A new capacity for plurisubharmonic functions. Acta Math, 1982, 149:1-40.
  • 2Bedford E, Taylor B A. Fine topology, Silov boundary and (dd)'. J Punct Anal, 1987, 72:225 251.
  • 3Ben Messaoud H, E1 Mir H. Tranehage et prolongement des eourants positifs ferm6s. Math Ann, 1997, 307:,173-487.
  • 4Ben Messaoud H, E1 Mir H. Opdrateur de Monge-Ampre et Tranchage des Courants Positifs Ferm(s. J Geom Anal, 2000, 10:139-168.
  • 5Cegrell U. Discontinuit6 de l'op6rateur de Monge-Ampre complexe. CRAS, Paris Sdrie I Math, 1983, 296:869-871.
  • 6Dabbek K, Elkhadhra F. Capacit associ6e k un courant positif fermi. Documenta Math, 2006, 11: 469486.
  • 7Demailly J -P. Complex analytic and differential geometry, available at: http://www-fourier.ujf-grenoble.fr 1997.
  • 8Kiselman C O. Sur la d6finition de l'op6rateur de Monge-Ampre complexe. Lecteures Notes, 1094. Toulouse, 1983:139--150.
  • 9Xing Y. Complex Monge-Ampre measures of plurisubharmonie functions with bounded values near the boundary. Canad J Math, 2000, 52(5): 1085--1100.
  • 10Xing Y. Convergence in capacity. Ann Inst Fourier, 2008, 58:1838 1861.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部