摘要
[目的]确定不同贮藏方式下,影响番茄样本定性判别的主要品质指标。[方法]本文采用可见近红外光谱技术分析了不同贮藏方式下番茄的光谱特性;引入主成分分析和灰色关联度分析方法对不同贮藏方式的番茄样本进行定性判别和贡献指标确定。[结果]不同贮藏方式下番茄的光谱特性有所不同,可用主成分分析提取的3个敏感波段1 927、1 401、1 222 nm(累积贡献率为98.92%)对其进行区分;与1 927 nm吸光度值关联度最大的为可滴定酸,与1 401 nm吸光度值关联度最大的为可溶性固形物,与1 222 nm吸光度值关联度最大的为可滴定酸。[结论]可滴定酸和可溶性固形物是影响其主成分分析的主要品质指标,也是影响上述不同贮藏方式下番茄样本分类的指标。该研究可为后续基于光谱技术的不同贮藏方式下番茄品质快速检测提供依据。
[Objective] The purpose of the study was to determine the main contribution factors which affected tomato qualities under different storage conditions. [Methods] Spectral characteristics of tomatoes were analyzed using visible and near infrared spectroscopy. Principal component analysis and grey relational analysis were introduced to distinguish tomatoes under different storage conditions and to determine the main contributors of the spectral characteristics. [Results] The results showed the different spectral characteristics of tomatoes under different storage conditions. Three sensitive bands at 1927, 1401, and 1222 nm with accumulated contribution rate of 98.92% were obtained by principal component analysis, and could be used to distinguish tomatoes under different storage conditions. Titratable acid displayed the maximum correlation with both 1927 and 1222 nm absorbance value, while soluble solids showed the maximum correlation with 1401 nm absorbance value. [Conclusion] The study results indicated that titratable acid and soluble solids were the main indicators that affect tomato qualities under different storage conditions. This study provided a basis for further research on rapid detection of tomato quality using spectral technology.
作者
宋海燕
王世芳
谌英敏
苏勤
Song Haiyan;Wang Shifang;Chen Yingmin;Su Qin(College of Engineering,Shanxi Agricultural University,Taigu 030801,China;Beijing Research Center for Agriculture Standards and Testing,Beijing 100097,China)
出处
《山西农业大学学报(自然科学版)》
CAS
北大核心
2019年第2期75-78,共4页
Journal of Shanxi Agricultural University(Natural Science Edition)
基金
国家重点研发计划(2018YFD0700300)
关键词
Vis-NIR
灰色关联度
主成分分析
番茄
贮藏方式
Visible-near infrared spectra
Grey relational analysis
Principal component analysis
Tomato
Storage method